Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Luminescence ; 39(7): e4823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965884

RESUMO

A highly selective bis thiophene-based chalcone as a chemosensor for detecting Fe3+ metal ions in DMF: H2O (9:1). This sensor was selective toward ferric ions over other metal ions with a detection limit in micromolar range.


Assuntos
Espectrometria de Fluorescência , Tiofenos , Tiofenos/química , Ferro/análise , Ferro/química , Estrutura Molecular , Compostos Férricos/química , Compostos Férricos/análise , Chalconas/química , Chalconas/análise , Chalcona/química , Corantes Fluorescentes/química
2.
Chemistry ; 27(7): 2348-2360, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175428

RESUMO

The structures of proton-bound complexes of 5,7-dimethoxy-4H-chromen-4-one (1) and basic amino acids (AAs), namely, histidine (His) and lysine (Lys), have been examined by means of mass spectrometry coupled with IR ion spectroscopy and quantum chemical calculations. This selection of systems is based on the fact that 1 represents a portion of glabrescione B, a natural small molecule of promising antitumor activity, while His and Lys are protein residues lining the cavity of the alleged receptor binding site. These species are thus a model of the bioactive adduct, although clearly the isolated state of the present study bears little resemblance to the complex biological environment. A common feature of [1+AA+H]+ complexes is the presence of a protonated AA bound to neutral 1, in spite of the fact that the gas-phase basicity of 1 is comparable to those of Lys and His. The carbonyl group of 1 acts as a powerful hydrogen-bond acceptor. Within [1+AA+H]+ the side-chain substituents (imidazole group for His and terminal amino group for Lys) present comparable basic properties to those of the α-amino group, taking part to a cooperative hydrogen-bond network. Structural assignment, relying on the comparative analysis of the infrared multiple photon dissociation (IRMPD) spectrum and calculated IR spectra for the candidate geometries, derives from an examination over two frequency ranges: 900-1800 and 2900-3700 cm-1 . Information gained from the latter one proved especially valuable, for example, pointing to the contribution of species characterized by an unperturbed carboxylic OH or imidazole NH stretching mode.


Assuntos
Aminoácidos/química , Antineoplásicos/química , Espectrofotometria Infravermelho , Ligação de Hidrogênio , Fótons , Prótons , Vibração
3.
Annu Rev Phys Chem ; 71: 189-211, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32070214

RESUMO

The gas-phase ground-state dissociation energy D0(S0) of an isolated and cold bimolecular complex is a fundamental measure of the intermolecular interaction strength between its constituents. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parameterization of dispersion-corrected density functionals or force-field models that are used in fields ranging from crystallography to biochemistry. We review experimental measurements of the gas-phase D0(S0) and D0(S1) values of 55 different M⋅S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell solvent atom or molecule. The experiments employ the triply resonant SEP-R2PI laser method, which involves M-centered (S0 → S1) electronic excitation, followed by S1 → S0 stimulated emission spanning a range of S0 state vibrational levels. At sufficiently high vibrational energy, vibrational predissociation of the M⋅S complex occurs. A total of 49 dissociation energies were bracketed to within ≤1.0 kJ/mol, providing a large experimental database of accurate noncovalent interactions.

4.
J Chem Phys ; 152(10): 104304, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171216

RESUMO

The ground-state intermolecular dissociation energies D0(S0) of supersonic-jet cooled intermolecular complexes of 1-naphthol (1NpOH) with the bi- and tricycloalkanes trans-decalin, cis-decalin, and adamantane were measured using the stimulated-emission-pumping/resonant two-photon ionization (SEP-R2PI) method. Using UV/UV holeburning, we identified two isomers (A and B) of the adamantane and trans-decalin complexes and four isomers (A-D) of the cis-decalin complex. For 1NpOH·adamantane A and B, the D0(S0) values are 21.6 ± 0.15 kJ/mol and 21.2 ± 0.32 kJ/mol, those of 1NpOH·trans-decalin A and B are 28.7 ± 0.3 kJ/mol and 28.1 ± 0.9 kJ/mol, and those of 1NpOH·cis-decalin A and B are 28.9 ± 0.15 kJ/mol and 28.7 ± 0.3 kJ/mol. Upon S0 → S1 electronic excitation of the 1NpOH moiety, the dissociation energies of adamantane, trans-decalin, and the cis-decalin isomer C change by <1% and those of cis-decalin isomers A, B, and D increase only slightly (1%-3%). This implies that the hydrocarbons are dispersively adsorbed to a naphthalene "face." Calculations using the dispersion-corrected density functional theory methods B97-D3 and B3LYP-D3 indeed predict that the stable structures have face geometries. The B97-D3 calculated D0(S0) values are within 1 kJ/mol of the experiment, while B3LYP-D3 predicts D0 values that are 1.4-3.3 kJ/mol larger. Although adamantane has been recommended as a "dispersion-energy donor," the binding energies of the trans- and cis-decalin adducts to 1NpOH are 30% larger than that of adamantane. In fact, the D0 value of 1NpOH·adamantane is close to that of 1NpOH·cyclohexane, reflecting the nearly identical contact layer between the two molecules.

5.
J Chem Phys ; 150(23): 234303, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31228890

RESUMO

The stimulated-emission-pumping/resonant 2-photon ionization (SEP-R2PI) method was used to determine the intermolecular dissociation energies D0 of jet-cooled 1-naphthol(1NpOH)·S complexes, where S is a linear molecule (N2, CO, CO2, OCS, N2O, and ethyne) or symmetric-top molecule (2-butyne) that contains double or triple bonds. The dissociation energies D0(S0) are bracketed as follows: 6.68 ± 0.08 kJ/mol for S=N2, 7.7 ± 0.8 kJ/mol for CO, 12.07 ± 0.10 kJ/mol for CO2, 13.03 ± 0.01 kJ/mol for N2O, 14.34 ± 0.08 kJ/mol for ethyne, 15.0 ± 1.35 kJ/mol for OCS, and 29.6 ± 2.4 kJ/mol for 2-butyne. The minimum-energy structures, vibrational wavenumbers, and zero-point vibrational energies were calculated using the dispersion-corrected density functional theory methods such as B97-D3 and B3LYP-D3 with the def2-QZVPP basis set. These predict that N2 and CO are dispersively bound Face complexes (S bound to a naphthalene Face), while CO2, N2O, and OCS adsorb into the "Notch" between the naphthyl and OH groups; these are denoted as Notch complexes. Ethyne and 2-butyne form Edge complexes involving H-bonds from the -OH group of 1NpOH to the center of the molecule. The presence of a double or triple bond or an aromatic C=C bond within S does not lead to a specific calculated geometry (Face, Notch or Edge). However, a correlation exists between the structure and the sign of the quadrupole moment component Θzz of S: negative Θzz correlates with Face or Notch, while positive Θzz correlates with Edge geometries.

6.
J Chem Phys ; 148(13): 134302, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626863

RESUMO

We measured accurate intermolecular dissociation energies D0 of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with the noble gases Ne, Ar, Kr, and Xe and with N2, using the stimulated-emission pumping resonant two-photon ionization method. The ground-state values D0(S0) for the 1NpOH⋅S complexes with S= Ar, Kr, Xe, and N2 were bracketed to be within ±3.5%; they are 5.67 ± 0.05 kJ/mol for S = Ar, 7.34 ± 0.07 kJ/mol for S = Kr, 10.8 ± 0.28 kJ/mol for S = Xe, 6.67 ± 0.08 kJ/mol for isomer 1 of the 1NpOH⋅N2 complex, and 6.62 ± 0.22 kJ/mol for the corresponding isomer 2. For S = Ne, the upper limit is D0 < 3.36 kJ/mol. The dissociation energies increase by 1%-5% upon S0 → S1 excitation of the complexes. Three dispersion-corrected density functional theory (DFT-D) methods (B97-D3, B3LYP-D3, and ωB97X-D) predict that the most stable form of these complexes involves dispersive binding to the naphthalene "face." A more weakly bound edge isomer is predicted in which the S moiety is H-bonded to the OH group of 1NpOH; however, no edge isomers were observed experimentally. The B97-D3 calculated dissociation energies D0(S0) of the face complexes with Ar, Kr, and N2 agree with the experimental values within <5%, but the D0(S0) for Xe is 12% too low. The B3LYP-D3 and ωB97X-D calculated D0(S0) values exhibit larger deviations to both larger and smaller dissociation energies. For comparison to 1-naphthol, we calculated the D0(S0) of the carbazole complexes with S = Ne, Ar, Kr, Xe, and N2 using the same DFT-D methods. The respective experimental values have been previously determined to be within <2%. Again, the B97-D3 results are in the best overall agreement with experiment.

7.
J Chem Phys ; 149(20): 204311, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501267

RESUMO

We have measured the intermolecular dissociation energies D 0 of supersonically cooled 1-naphthol (1NpOH) complexes with solvents S = furan, thiophene, 2,5-dimethylfuran, and tetrahydrofuran. The naphthol OH forms non-classical H-bonds with the aromatic π-electrons of furan, thiophene, and 2,5-dimethylfuran and a classical H-bond with the tetrahydrofuran O atom. Using the stimulated-emission pumping resonant two-photon ionization method, the ground-state D 0(S 0) values were bracketed as 21.8 ± 0.3 kJ/mol for furan, 26.6 ± 0.6 kJ/mol for thiophene, 36.5 ± 2.3 kJ/mol for 2,5-dimethylfuran, and 37.6 ± 1.3 kJ/mol for tetrahydrofuran. The dispersion-corrected density functional theory methods B97-D3, B3LYP-D3 (using the def2-TZVPP basis set), and ωB97X-D [using the 6-311++G(d,p) basis set] predict that the H-bonded (edge) isomers are more stable than the face isomers bound by dispersion; experimentally, we only observe edge isomers. We compare the calculated and experimental D 0 values and extend the comparison to the previously measured 1NpOH complexes with cyclopropane, benzene, water, alcohols, and cyclic ethers. The dissociation energies of the nonclassically H-bonded complexes increase roughly linearly with the average polarizability of the solvent, α ¯ (S). By contrast, the D 0 values of the classically H-bonded complexes are larger, increase more rapidly at low α ¯ (S), but saturate for large α ¯ (S). The calculated D 0(S 0) values for the cyclopropane, benzene, furan, and tetrahydrofuran complexes agree with experiment to within 1 kJ/mol and those of thiophene and 2,5-dimethylfuran are ∼3 kJ/mol smaller than experiment. The B3LYP-D3 calculated D 0 values exhibit the lowest mean absolute deviation (MAD) relative to experiment (MAD = 1.7 kJ/mol), and the B97-D3 and ωB97X-D MADs are 2.2 and 2.6 kJ/mol, respectively.

8.
Small Methods ; 8(1): e2301086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806766

RESUMO

A transportable reversible assembly of gold nanoparticles (AuNPs) in an aqueous environment addresses the need for in situ surafce-enhanced Raman spectroscopy (SERS) hotspot creation for biological applications. Usually, light-directed AuNP assembly methods use higher laser powers and surfactants and are, hence, unsuitable for biological applications. Here, surface plasmon polaritons-assisted dynamic assembly of AuNPs are demonstrated at laser power density as low as 100 nW µm-2 . The AuNP assembly with multiple controllable hotspots is generated in an Au-water interface for solution-based SERS measurements. The major advantage of the method is that the interparticle nanogap is tunable to achieve analyte and AuNP-specific optimum SERS enhancement. The SERS intensity is reproducible on multiple reassembly cycles and assembly attempts, proving repeatability in the produced nanogap pattern. The assembly experiments reveal the influence of AuNP surface charge and the resulting polarizability on the SPP forces. The developed system and method can detect sulforhodamine 101 (SR101) dye molecules at concentrations as low as 10-10  m. Further, the SERS measurements on double-stranded DNA suggest that the molecules are oriented in a fashion to expose adenosine to the enhanced field, leading to its dominance in the recorded spectra.

10.
RSC Adv ; 14(28): 20398-20409, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932983

RESUMO

Synthesis of new supramolecules with specific properties and realistic applications requires a sound knowledge of the structure-property relationships of the synthesized molecules. Non-covalent interaction like hydrogen bonding is conducive in realizing mesomorphism. The induction of the liquid crystalline character is associated with the strength of hydrogen bonds formed between the interacting components, which are affected by the change of polarity and polarizability of both components upon change in their terminal polar substituents. When the polar substituents are similar in their reactivity, how does the size of the polar substituent influence the mesomorphism? New hydrogen bonded liquid crystals are synthesized with fluorine and chlorine as substituents, and the mesomorphic behaviour is studied with the size of the substituent as a critical parameter. The chemical characterization is carried out by FTIR measurements, the phase characterization by polarizing optical microscopy and the thermal characterization by differential scanning calorimetry. The DFT method utilizing wb97x-D theory along with the cc-pVTZ basis set were used for the calculations. The hybrid functional B3LYP-D3 and Gaussian type basis set 6-31G(d,p) were used for studying the orientation of the molecules. It is observed that the ortho substituents reduce the co-planarity, meta substituents lead to the molecular broadening while para substituents exhibited highest mesomorphism by enhancing longitudinal dipole moment. Fluoro substituted compounds are exhibiting higher mesomorphism while the bulky chloro substituents are helping to better stack the molecules possessing longer chain lengths.

11.
Heliyon ; 9(10): e21014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916072

RESUMO

6-fluoro-3-(4-piperidinyl)-1,2-benzisoxazole. HCl (FPBH), a substituted benzisoxazole derivative, was prepared from isonipecotic acid and characterized using various spectroscopic techniques. Using electrochemical examinations such as potentiodynamic polarisation (PDP) and electrochemical impedance spectroscopic (EIS) technique, the corrosion mitigation capabilities of this compound for mild steel (MS) in 0.5 M HCl medium were investigated. Theoretical studies were performed using quantum chemical calculations and density functional theory (DFT). PDP results exhibited the mixed-type behavior of FPBH and showed a maximum efficiency of 94.5 % at 1 × 10-3 M. The development of a protective adsorbed layer of FPBH decreases the corrosion current density (icorr) and corrosion rate (CR). The EIS technique revealed that the rise in the charge transfer resistance (Rct) values and reduction in the thickness of the double-layer capacitance (Cdl) reflected the drop in corrosion rate. The adsorption of FPBH took place through physisorption by conforming Langmuir's isotherm. The DFT method was performed on the optimized structure of FPBH to get additional evidence on the action mode of FPBH with the metal surface.

12.
J Phys Chem A ; 116(4): 1129-36, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22204381

RESUMO

The infrared (IR) spectra of the supersonic-jet cooled 9H- and 7H-tautomers of 2-aminopurine (2AP) and of the 9H-2-aminopurine·H(2)O monohydrate clusters have been measured by mass- and species-selective IR-UV double resonance spectroscopy in the 3200-3900 cm(-1) region, covering the N-H and O-H stretching vibrations. The spectra are complemented by density functional (B3LYP and PW91) and by second-order Møller-Plesset (MP2) calculations of the electronic energies and vibrational frequenciesof the respective 2AP tautomers and clusters. The 9H- and 7H-2-aminopurine tautomers were definitively identified by the shifts of their NH and NH(2) symmetric and asymmetric stretching frequencies and by comparison to the B3LYP/TZVP calculated IR spectra. The H-bond topologies of the two previously observed 9H-2-aminopurine·H(2)O isomers (Sinha. R. K.; et al. J. Phys. Chem. A2011, 115, 6208) are definitively identified as the "sugar-edge" isomer A and the "trans-amino-bound" isomer B by comparing their IR spectra to the calculated frequencies and IR intensities of the cluster isomers A, B, C, and D, as well as to the IR spectrum of 9H-2AP. The sugar-edge isomer A involves N9-H···OH(2) and HOH···N3 hydrogen bonds and is predicted to be the most stable form. The amino-bound isomer B involves NH(2)···OH(2) and HOH···N1 hydrogen bonds and is calculated to lie 2.5 kJ/mol above isomer A. The H-bond topology of the "cis-amino-bound" isomer C is symmetrically related to isomer B, with a hydrogen bond to the N3 of the pyrimidine group. However, it is calculated to lie 7 kJ/mol above isomer A and indeed is not observed in the supersonic jet. Isomer D involves a single H-bond to the N7 position, is predicted to be 14 kJ/mol above A and is therefore not observed.


Assuntos
2-Aminopurina/química , Água/química , 2-Aminopurina/análogos & derivados , Teoria Quântica , Espectrofotometria Infravermelho , Estereoisomerismo
13.
Inorg Chem ; 50(10): 4445-52, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21476565

RESUMO

Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.


Assuntos
Complexos de Coordenação/química , Heme/química , Ferro/metabolismo , Metaloporfirinas/química , Óxido Nítrico/metabolismo , Complexos de Coordenação/metabolismo , Elétrons , Compostos Férricos/química , Compostos Ferrosos/química , Gases/metabolismo , Heme/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Metaloporfirinas/metabolismo , Modelos Químicos , Óxido Nítrico/química , Teoria Quântica , Soluções , Espectrometria de Massas por Ionização por Electrospray , Vibração
14.
J Phys Chem A ; 115(23): 6208-17, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21322622

RESUMO

For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine·H(2)O monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift δν of the S(1) ← S(0) transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (δν = -889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H(2)O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D(e) = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)ππ* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S(0) state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)ππ* state to the lower-lying (1)nπ* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)ππ* state of B is planar and decoupled from the (1)nπ* state. These observations agree with the calculations, which predict the (1)nπ* above the (1)ππ* state for isomer B but below the (1)ππ* for both 9H-2AP and isomer A.


Assuntos
2-Aminopurina/química , Teoria Quântica , Água/química , Espectrofotometria Ultravioleta
15.
J Chem Phys ; 134(11): 114307, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428619

RESUMO

We have investigated the UV vibronic spectra and excited-state nonradiative processes of the 7H- and 9H-tautomers of jet-cooled 2-aminopurine (2AP) and of the 9H-2AP-d(4) and -d(5) isotopomers, using two-color resonant two-photon ionization spectroscopy at 0.3 and 0.045 cm(-1) resolution. The S(1) ← S(0) transition of 7H-2AP was observed for the first time. It lies ∼1600 cm(-1) below that of 9H-2AP, is ∼1000 times weaker and exhibits only in-plane vibronic excitations. In contrast, the S(1) ← S(0) spectra of 9H-2AP, 9H-2AP-d(4), and 9H-2AP-d(5) show numerous low-frequency bands that can be systematically assigned to overtone and combinations of the out-of-plane vibrations ν(1)', ν(2)', and ν(3)'. The intensity of these out-of-plane bands reflects an out-of-plane deformation in the (1)ππ∗(L(a)) state. Approximate second-order coupled-cluster theory also predicts that 2-aminopurine undergoes a "butterfly" deformation in its lowest (1)ππ∗ state. The rotational contours of the 9H-2AP, 9H-2AP-d(4), and 9H-2AP-d(5) 0(0)(0) bands and of eight vibronic bands of 9H-2AP up to 0(0)(0) + 600 cm(-1) exhibit 75%-80% in-plane (a∕b) polarization, which is characteristic for a (1)ππ∗ excitation. A 20%-25% c-axis (perpendicular) transition dipole moment component may indicate coupling of the (1)ππ∗ bright state to the close-lying (1)nπ∗ dark state. However, no (1)nπ∗ vibronic bands were detected below or up to 500 cm(-1) above the (1)ππ∗ 0(0)(0) band. Following (1)ππ∗ excitation, 9H-2AP undergoes a rapid nonradiative transition to a lower-lying long-lived state with a lifetime ≥5 µs. The ionization potential of 9H-2AP was measured via the (1)ππ∗ state (IP = 8.020 eV) and the long-lived state (IP > 9.10 eV). The difference shows that the long-lived state lies ≥1.08 eV below the (1)ππ∗ state. Time-dependent B3LYP calculations predict the (3)ππ∗ (T(1)) state 1.12 eV below the (1)ππ∗ state, but place the (1)nπ∗ (S(1)) state close to the (1)ππ∗ state, implying that the long-lived state is the lowest triplet (T(1)) and not the (1)nπ∗ state.


Assuntos
2-Aminopurina/química , Adenina/química , Adenina/análogos & derivados , Algoritmos , Elétrons , Isomerismo , Fótons , Teoria Quântica , Rotação , Análise Espectral/métodos , Vibração
16.
RSC Adv ; 12(1): 331-337, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424501

RESUMO

In the present work, we report the fabrication of a surface-enhanced Raman spectroscopy (SERS) substrate on a simple and easily fabricable hydrophobic surface. The substrates are prepared by slow and fast evaporation of a droplet of silver nanoparticle suspension in water. The corresponding identifiers for two substrates are "s_evp" and "f_evp" respectively. It is found that the dried spot size is small on s_evp compared to that on f_evp. This also minimizes the coffee stain effect and enriches the spot in a better way on s_evp compared to f_evp. Consequently, using SERS experimentation on our lab-built setup, concentration as low as 2.5*10-12 M of rhodamine 6G molecules was detected on s_evp compared to 2.5 × 10-10 M on f_evp. The proposed s_evp SERS substrate is much easier to fabricate and easy to use compared to super-hydrophobic SERS substrates.

17.
RSC Adv ; 11(14): 8042-8050, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423331

RESUMO

We report the synthesis of Ag nanocubes by using a sodium sulfide assisted solvothermal method. Small edge-length nanocubes (32 and 44 nm) were obtained at 145 and 155 °C reaction temperature in the synthesis process. The refractive index sensitivity of synthesized nanocubes was investigated with an aqueous solution of glucose. The refractive index sensitivity of 161 nm per RIU was found in the colloidal dispersion of nanocubes. On the LSPR chip made by immobilization of nanocubes on the (3-aminopropyl)trimethoxysilane modified glass coverslip, the obtained sensitivity was 116 nm per RIU. Detection of formaldehyde in water and milk samples was also performed with nanocubes of edge-length of 44 nm. Formaldehyde detection was performed by utilizing the interaction of the aryl amine of 4-aminothiophenol immobilized on the nanocubes and electrophilic carbon atom of the formaldehyde. In water and in diluted milk, the formaldehyde sensitivity of 0.62 and 0.29 nm µM-1 was obtained, respectively.

18.
RSC Adv ; 11(33): 20123-20136, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35479932

RESUMO

3-Benzylchroman-4-ones (homoisoflavanones) are oxygen-containing heterocycles with a sixteen-carbon skeleton. They belong to the class of naturally occurring polyphenolic flavonoids with limited occurrence in nature and possess anti-inflammatory, antibacterial, antihistaminic, antimutagenic, antiviral, and angioprotective properties. Recently, we reported the synthesis and anticancer activity studies of fifteen 3-benzylchroman-4-one molecules, and most of them were proven to be effective against BT549 and HeLa cells. In this work, we report the single-crystal X-ray crystallographic studies of two molecules 3-[(2-hydroxyphenyl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one and 3-[(2,4-dimethoxyphenyl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one. The single crystals were grown using a novel laser-induced crystallization technique. We observed that the 3-benzylchroman-4-one derivative bearing OH substitution at the 2' position adopted different conformation due to formation of dimers through O-H⋯O, and C-H⋯O intermolecular hydrogen bondings. The role of OH substitution in the aforementioned conformational changes was evaluated using density functional theory (DFT), Hirshfeld surface, energy framework and FTIR spectroscopy analysis. In addition, we have carried out a Cambridge Structural Database (CSD) study to understand the conformational changes using five analogue structures. X-ray crystallographic, computational, and spectroscopic studies of 3-benzylchroman-4-ones provided an insight into the role of substitution at benzyl moieties in stabilizing the three-dimensional (3D) structures.

19.
Phys Chem Chem Phys ; 12(33): 9794-800, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20582363

RESUMO

The interest in the radical cations of amino acids is twofold. On the one hand, these species are relevant in enzymatic catalysis and in oxidative damage of proteins. On the other hand, as constituents of peptides and proteins, they aid the mass spectrometric characterization of these biomolecules, yielding diagnostic fragmentation patterns and providing complementary information with respect to the one obtained from even electron ions. The cysteine radical cation has been obtained by S-NO bond cleavage of protonated S-nitrosocysteine and thoroughly characterized by IRMPD spectroscopy, both in the 1000-2000 cm(-1) range (the highly structurally diagnostic, so-called 'fingerprint' range) and in the 2900-3700 cm(-1) spectral range, encompassing O-H and N-H stretching vibrations. In this way the distonic structure in which the charge is on the NH(3) group and the spin is on the sulfur atom is unambiguously demonstrated. This tautomer is a local minimum on the potential energy surface, at 29.7 kJ mol(-1) with respect to the most stable tautomer, a captodative structure allowing extensive delocalization of charge and spin.


Assuntos
Cátions/química , Cisteína/química , Gases/química , Cisteína/análogos & derivados , S-Nitrosotióis/química , Espectrofotometria Infravermelho , Termodinâmica
20.
Phys Chem Chem Phys ; 12(41): 13455-67, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20852770

RESUMO

S-Nitrosocaptopril, a biologically active S-nitrosothiol, is generated as protonated species and isolated in the gas phase by electrospray ionization coupled to Fourier Transform Ion Cyclotron Resonance (FT-ICR) or ion-trap mass spectrometry. The structural and IR spectroscopic characterization of protonated S-nitrosocaptopril (SNOcapH(+)) is aided by the comparative study of the parent species lacking the NO feature, namely protonated captopril. The study is accomplished by methodologies based on tandem mass spectrometry, namely by energy resolved collision-induced dissociation and infrared multiple-photon dissociation (IRMPD) spectroscopy, backed by density functional theory calculations. IRMPD spectra have been obtained both in the 1000-1900 cm(-1) fingerprint range, using a beamline of the infrared free electron laser (IR-FEL) at the Centre Laser Infrarouge d'Orsay (CLIO), and in the O-H and N-H stretching region (2900-3700 cm(-1)) using the tunable IR radiation of a tabletop parametric oscillator/amplifier (OPO/OPA) laser source. The structural features of the ion have been ascertained by comparison of the experimental IRMPD spectra with the IR transitions calculated for the lowest energy isomers. Evidence is obtained that protonation occurs at the amide carbonyl oxygen which is found to be the thermodynamically most basic site. However, SNOcapH(+) is present as a thermally equilibrated mixture of low-energy structures, with a major contribution of the most stable isomer characterized by a trans relationship of the positively charged OH group with respect to the carboxylic acid functionality on the adjacent proline ring and by an anti conformation at the S-N (partial) double bond, though the energy difference with the analogous trans-syn isomer is less than 1 kJ mol(-1). The highly diagnostic N-O stretching mode has been unambiguously identified, which may be regarded as an informative probe for S-nitrosation features in more complex, biologically active molecules.


Assuntos
Aminoácidos/química , Captopril/análogos & derivados , Amidas/química , Captopril/química , Isomerismo , Prótons , Espectrofotometria Infravermelho , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA