Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pediatr ; 182(6): 2683-2692, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36997769

RESUMO

The introduction of rapid exome sequencing (rES) for critically ill neonates admitted to the neonatal intensive care unit has made it possible to impact clinical decision-making. Unbiased prospective studies to quantify the impact of rES over routine genetic testing are, however, scarce. We performed a clinical utility study to compare rES to conventional genetic diagnostic workup for critically ill neonates with suspected genetic disorders. In a multicenter prospective parallel cohort study involving five Dutch NICUs, we performed rES in parallel to routine genetic testing for 60 neonates with a suspected genetic disorder and monitored diagnostic yield and the time to diagnosis. To assess the economic impact of rES, healthcare resource use was collected for all neonates. rES detected more conclusive genetic diagnoses than routine genetic testing (20% vs. 10%, respectively), in a significantly shorter time to diagnosis (15 days (95% CI 10-20) vs. 59 days (95% CI 23-98, p < 0.001)). Moreover, rES reduced genetic diagnostic costs by 1.5% (€85 per neonate). CONCLUSION:  Our findings demonstrate the clinical utility of rES for critically ill neonates based on increased diagnostic yield, shorter time to diagnosis, and net healthcare savings. Our observations warrant the widespread implementation of rES as first-tier genetic test in critically ill neonates with disorders of suspected genetic origin. WHAT IS KNOWN: • Rapid exome sequencing (rES) enables diagnosing rare genetic disorders in a fast and reliable manner, but retrospective studies with neonates admitted to the neonatal intensive care unit (NICU) indicated that genetic disorders are likely underdiagnosed as rES is not routinely used. • Scenario modeling for implementation of rES for neonates with presumed genetic disorders indicated an expected increase in costs associated with genetic testing. WHAT IS NEW: • This unique prospective national clinical utility study of rES in a NICU setting shows that rES obtained more and faster diagnoses than conventional genetic tests. • Implementation of rES as replacement for all other genetic tests does not increase healthcare costs but in fact leads to a reduction in healthcare costs.


Assuntos
Estado Terminal , Testes Genéticos , Recém-Nascido , Humanos , Sequenciamento do Exoma , Estudos Prospectivos , Estudos Retrospectivos , Países Baixos , Estudos de Coortes , Testes Genéticos/métodos
2.
J Med Genet ; 57(1): 23-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494578

RESUMO

BACKGROUND: Idiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy. METHODS AND RESULTS: Exome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2-·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2-· levels in the patient's skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2. CONCLUSION: Our results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.


Assuntos
Cardiomiopatia Dilatada/genética , Mutação de Sentido Incorreto , Miocárdio/patologia , Superóxido Dismutase/genética , Sequência de Aminoácidos , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/metabolismo , Sequência Conservada , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Linhagem , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
3.
Hum Mutat ; 40(12): 2230-2238, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433103

RESUMO

Each year diagnostic laboratories in the Netherlands profile thousands of individuals for heritable disease using next-generation sequencing (NGS). This requires pathogenicity classification of millions of DNA variants on the standard 5-tier scale. To reduce time spent on data interpretation and increase data quality and reliability, the nine Dutch labs decided to publicly share their classifications. Variant classifications of nearly 100,000 unique variants were catalogued and compared in a centralized MOLGENIS database. Variants classified by more than one center were labeled as "consensus" when classifications agreed, and shared internationally with LOVD and ClinVar. When classifications opposed (LB/B vs. LP/P), they were labeled "conflicting", while other nonconsensus observations were labeled "no consensus". We assessed our classifications using the InterVar software to compare to ACMG 2015 guidelines, showing 99.7% overall consistency with only 0.3% discrepancies. Differences in classifications between Dutch labs or between Dutch labs and ACMG were mainly present in genes with low penetrance or for late onset disorders and highlight limitations of the current 5-tier classification system. The data sharing boosted the quality of DNA diagnostics in Dutch labs, an initiative we hope will be followed internationally. Recently, a positive match with a case from outside our consortium resulted in a more definite disease diagnosis.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Disseminação de Informação/métodos , Confiabilidade dos Dados , Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Guias como Assunto , Humanos , Laboratórios , Países Baixos , Análise de Sequência de DNA
4.
Arterioscler Thromb Vasc Biol ; 38(7): 1440-1453, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853565

RESUMO

OBJECTIVE: Studies into the role of LRP1 (low-density lipoprotein receptor-related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in LRP1 (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare LRP1 variants identified in subjects with extremely low HDL-C levels. APPROACH AND RESULTS: In 2 subjects with HDL-C below the first percentile for age and sex and moderately elevated triglycerides, we identified 2 rare variants in LRP1: p.Val3244Ile and p.Glu3983Asp. Both variants decrease LRP1 expression and stability. We show in a series of translational experiments that these variants culminate in reduced trafficking of ABCA1 (ATP-binding cassette A1) to the cell membrane. This is accompanied by an increase in cell surface expression of SR-B1 (scavenger receptor class B type 1). Combined these effects may contribute to low HDL-C levels in our study subjects. Supporting these findings, we provide epidemiological evidence that rs116133520 is associated with apo (apolipoprotein) A1 but not with apoB levels. CONCLUSIONS: This study provides the first evidence that rare variants in LRP1 are associated with changes in human lipid metabolism. Specifically, this study shows that LRP1 may affect HDL metabolism by virtue of its effect on both ABCA1 and SR-B1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , HDL-Colesterol/metabolismo , Fibroblastos/metabolismo , Variação Genética , Hipoalfalipoproteinemias/sangue , Hipoalfalipoproteinemias/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores Depuradores Classe B/metabolismo , Apolipoproteína A-I/sangue , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipoalfalipoproteinemias/diagnóstico , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fenótipo , Estudos Prospectivos , Estabilidade Proteica , Transporte Proteico , Triglicerídeos/sangue
5.
Hum Mol Genet ; 25(13): 2728-2737, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27260403

RESUMO

Spinocerebellar ataxia type 23 (SCA23) is caused by missense mutations in prodynorphin, encoding the precursor protein for the opioid neuropeptides α-neoendorphin, Dynorphin (Dyn) A and Dyn B, leading to neurotoxic elevated mutant Dyn A levels. Dyn A acts on opioid receptors to reduce pain in the spinal cord, but its cerebellar function remains largely unknown. Increased concentration of or prolonged exposure to Dyn A is neurotoxic and these deleterious effects are very likely caused by an N-methyl-d-aspartate-mediated non-opioid mechanism as Dyn A peptides were shown to bind NMDA receptors and potentiate their glutamate-evoked currents. In the present study, we investigated the cellular mechanisms underlying SCA23-mutant Dyn A neurotoxicity. We show that SCA23 mutations in the Dyn A-coding region disrupted peptide secondary structure leading to a loss of the N-terminal α-helix associated with decreased κ-opioid receptor affinity. Additionally, the altered secondary structure led to increased peptide stability of R6W and R9C Dyn A, as these peptides showed marked degradation resistance, which coincided with decreased peptide solubility. Notably, L5S Dyn A displayed increased degradation and no aggregation. R6W and wt Dyn A peptides were most toxic to primary cerebellar neurons. For R6W Dyn A, this is likely because of a switch from opioid to NMDA- receptor signalling, while for wt Dyn A, this switch was not observed. We propose that the pathology of SCA23 results from converging mechanisms of loss of opioid-mediated neuroprotection and NMDA-mediated excitotoxicity.


Assuntos
Dinorfinas/metabolismo , Degenerações Espinocerebelares/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Cultura de Células , Simulação por Computador , Dinorfinas/fisiologia , Endorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Neurotoxinas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Degenerações Espinocerebelares/genética
6.
Genet Med ; 20(11): 1374-1386, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29517769

RESUMO

PURPOSE: We evaluated the diagnostic yield in pediatric dilated cardiomyopathy (DCM) of combining exome sequencing (ES)-based targeted analysis and genome-wide copy-number variation (CNV) analysis. Based on our findings, we retrospectively designed an effective approach for genetic testing in pediatric DCM. METHODS: We identified 95 patients (in 85 families) with pediatric onset of DCM. We initially excluded 13 of these families because they already had a genetic diagnosis, leaving a total of 31 probands for single-nucleotide polymorphism (SNP) array and trio-ES. We used Human Phenotype Ontology (HPO)-based filtering for our data analysis. RESULTS: We reached a genetic diagnosis in 15/31 (48.4%) families. ES yielded a diagnosis in 13 probands (13/15; 86.7%), with most variants being found in genes encoding structural cardiomyocyte components. Two large deletions were identified using SNP array. If we had included the 13 excluded families, our estimated yield would have been 54%. CONCLUSION: We propose a standardized, stepwise analysis of (i) well-known cardiomyopathy genes, (ii) CNVs, (iii) all genes assigned to HPO cardiomyopathy, and (iv) if appropriate, genes assigned to other HPO terms. This diagnostic approach yields the highest increase at each subsequent step and reduces analytic effort, cost, the number of variants of unknown clinical significance, and the chance of incidental findings.


Assuntos
Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Variações do Número de Cópias de DNA/genética , Testes Genéticos/métodos , Adolescente , Cardiomiopatia Dilatada/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Deleção de Sequência/genética , Sequenciamento do Exoma
7.
Clin Chem ; 64(7): 1096-1103, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29794109

RESUMO

BACKGROUND: Over 500 translocations have been identified in acute leukemia. To detect them, most diagnostic laboratories use karyotyping, fluorescent in situ hybridization, and reverse transcription PCR. Targeted locus amplification (TLA), a technique using next-generation sequencing, now allows detection of the translocation partner of a specific gene, regardless of its chromosomal origin. We present a TLA multiplex assay as a potential first-tier screening test for detecting translocations in leukemia diagnostics. METHODS: The panel includes 17 genes involved in many translocations present in acute leukemias. Procedures were optimized by using a training set of cell line dilutions and 17 leukemia patient bone marrow samples and validated by using a test set of cell line dilutions and a further 19 patient bone marrow samples. Per gene, we determined if its region was involved in a translocation and, if so, the translocation partner. To balance sensitivity and specificity, we introduced a gray zone showing indeterminate translocation calls needing confirmation. We benchmarked our method against results from the 3 standard diagnostic tests. RESULTS: In patient samples passing QC, we achieved a concordance with benchmarking tests of 81% in the training set and 100% in the test set, after confirmation of 4 and nullification of 3 gray zone calls (in total). In cell line dilutions, we detected translocations in 10% aberrant cells at several genetic loci. CONCLUSIONS: Multiplex TLA shows promising results as an acute leukemia screening test. It can detect cryptic and other translocations in selected genes. Further optimization may make this assay suitable for diagnostic use.


Assuntos
Testes Genéticos/métodos , Leucemia/genética , Translocação Genética , Doença Aguda , Células Cultivadas , Humanos , Cariotipagem , Leucemia/diagnóstico , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Brain ; 140(11): 2860-2878, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053796

RESUMO

The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.


Assuntos
Redes Reguladoras de Genes/genética , Ataxias Espinocerebelares/genética , Animais , Células COS , Caderinas/genética , Chlorocebus aethiops , Proteína p300 Associada a E1A/genética , Exoma/genética , Feminino , Células HEK293 , Humanos , Cinesinas/genética , Masculino , Linhagem , Fosfolipase D/genética , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transfecção
9.
Neurogenetics ; 18(4): 185-194, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28842795

RESUMO

An X-linked condition characterized by the combination of hypomyelinating leukodystrophy and spondylometaphyseal dysplasia (H-SMD) has been observed in only four families, with linkage to Xq25-27, and recent genetic characterization in two families with a common AIFM1 mutation. In our study, 12 patients (6 families) with H-SMD were identified and underwent comprehensive assessment accompanied by whole-exome sequencing (WES). Pedigree analysis in all families was consistent with X-linked recessive inheritance. Presentation typically occurred between 12 and 36 months. In addition to the two disease-defining features of spondylometaphyseal dysplasia and hypomyelination on MRI, common clinical signs and symptoms included motor deterioration, spasticity, tremor, ataxia, dysarthria, cognitive defects, pulmonary hypertension, nystagmus, and vision loss due to retinopathy. The course of the disease was slowly progressive. All patients had maternally inherited or de novo mutations in or near exon 7 of AIFM1, within a region of 70 bp, including synonymous and intronic changes. AIFM1 mutations have previously been associated with neurologic presentations as varied as intellectual disability, hearing loss, neuropathy, and striatal necrosis, while AIFM1 mutations in this small region present with a distinct phenotype implicating bone. Analysis of cell lines derived from four patients identified significant reductions in AIFM1 mRNA and protein levels in osteoblasts. We hypothesize that AIFM1 functions in bone metabolism and myelination and is responsible for the unique phenotype in this condition.


Assuntos
Fator de Indução de Apoptose/genética , Genes Ligados ao Cromossomo X/genética , Predisposição Genética para Doença , Mutação/genética , Humanos , Deficiência Intelectual/genética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Análise de Sequência de DNA
10.
Mov Disord ; 32(4): 569-575, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28186668

RESUMO

BACKGROUND: Genetic disorders causing dystonia show great heterogeneity. Recent studies have suggested that next-generation sequencing techniques such as gene panel analysis can be effective in diagnosing heterogeneous conditions. The objective of this study was to investigate whether dystonia patients with a suspected genetic cause could benefit from the use of gene panel analysis. METHODS: In this post hoc study, we describe gene panel analysis results of 61 dystonia patients (mean age, 31 years; 72% young onset) in our tertiary referral center. The panel covered 94 dystonia-associated genes. As comparison with a historic cohort was not possible because of the rapidly growing list of dystonia genes, we compared the diagnostic workup with and without gene panel analysis in the same patients. The workup without gene panel analysis (control group) included theoretical diagnostic strategies formulated by independent experts in the field, based on detailed case descriptions. The primary outcome measure was diagnostic yield; secondary measures were cost and duration of diagnostic workup. RESULTS: Workup with gene panel analysis led to a confirmed molecular diagnosis in 14.8%, versus 7.4% in the control group (P = 0.096). In the control group, on average 3 genes/case were requested. The mean costs were lower in the gene panel analysis group (€1822/case) than in the controls (€2660/case). The duration of the workup was considerably shorter with gene panel analysis (28 vs 102 days). CONCLUSIONS: Gene panel analysis facilitates molecular diagnosis in complex cases of dystonia, with a good diagnostic yield (14.8%), a quicker diagnostic workup, and lower costs, representing a major improvement for patients and their families. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Análise Mutacional de DNA/métodos , Distonia/diagnóstico , Distonia/genética , Mutação/genética , Adolescente , Adulto , Idade de Início , Criança , Estudos de Coortes , Custos e Análise de Custo , Análise Mutacional de DNA/economia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
11.
Hum Mutat ; 37(5): 457-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26864275

RESUMO

We have developed a tool for detecting single exon copy-number variations (CNVs) in targeted next-generation sequencing data: CoNVaDING (Copy Number Variation Detection In Next-generation sequencing Gene panels). CoNVaDING includes a stringent quality control (QC) metric, that excludes or flags low-quality exons. Since this QC shows exactly which exons can be reliably analyzed and which exons are in need of an alternative analysis method, CoNVaDING is not only useful for CNV detection in a research setting, but also in clinical diagnostics. During the validation phase, CoNVaDING detected all known CNVs in high-quality targets in 320 samples analyzed, giving 100% sensitivity and 99.998% specificity for 308,574 exons. CoNVaDING outperforms existing tools by exhibiting a higher sensitivity and specificity and by precisely identifying low-quality samples and regions.


Assuntos
Variações do Número de Cópias de DNA , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Bases de Dados Genéticas , Éxons , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software/normas
12.
Am J Hum Genet ; 92(6): 946-54, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23664116

RESUMO

Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA.


Assuntos
Proteínas de Transporte/genética , Atrofia Muscular Espinal/genética , Mutação de Sentido Incorreto , Adulto , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/metabolismo , Pré-Escolar , Sequência Conservada , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Dominantes , Estudos de Associação Genética , Ligação Genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Células HeLa , Humanos , Masculino , Proteínas Associadas aos Microtúbulos , Atrofia Muscular Espinal/congênito , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Circ Res ; 114(1): 124-42, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24385507

RESUMO

High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic group of the smallest and densest lipoproteins present in the circulation. This review provides the current molecular insight into HDL metabolism led by articles describing mutations in genes that have a large affect on HDL cholesterol levels through their roles in HDL and triglyceride metabolism. Using this information from both human and animal studies, it is discussed how HDL is produced, remodeled in the circulation, affected by factors that control the metabolism of triglyceride-rich lipoproteins, how it helps maintain cellular cholesterol homeostasis, and, finally, how it is catabolized. It can be concluded that HDL cholesterol as a trait is genetically heterogeneous, with as many as 40 genes involved. In most cases, only heterozygotes of gene variants are known, and HDL cholesterol as a trait is inherited in an autosomal-dominant manner. Only 3 Mendelian disorders of HDL metabolism are currently known, which are inherited in an autosomal-recessive mode.


Assuntos
HDL-Colesterol/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Animais , HDL-Colesterol/genética , Genes Dominantes , Genes Recessivos , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Mutação
14.
Cell Mol Life Sci ; 72(17): 3387-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25854634

RESUMO

The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.


Assuntos
Mutação/genética , Células de Purkinje/metabolismo , Canais de Potássio Shal/metabolismo , Degenerações Espinocerebelares/genética , Análise de Variância , Cicloeximida , Primers do DNA/genética , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Mutagênese Sítio-Dirigida , Canais de Potássio Shal/genética
15.
J Neurol Neurosurg Psychiatry ; 86(7): 774-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25395479

RESUMO

Early aetiological diagnosis is of paramount importance for childhood dystonia because some of the possible underlying conditions are treatable. Numerous genetic and non-genetic causes have been reported, and diagnostic workup is often challenging, time consuming and costly. Recently, a paradigm shift has occurred in molecular genetic diagnostics, with next-generation sequencing techniques now allowing us to analyse hundreds of genes simultaneously. To ensure that patients benefit from these new techniques, adaptation of current diagnostic strategies is needed. On the basis of a systematic literature review of dystonia with onset in childhood or adolescence, we propose a novel diagnostic strategy with the aim of helping clinicians determine which patients may benefit by applying these new genetic techniques and which patients first require other investigations. We also provide an up-to-date list of candidate genes for a dystonia gene panel, based on a detailed literature search up to 20 October 2014. While new genetic techniques are certainly not a panacea, possible advantages of our proposed strategy include earlier diagnosis and avoidance of unnecessary investigations. It will therefore shorten the time of uncertainty for patients and their families awaiting a definite diagnosis.


Assuntos
Distonia/diagnóstico , Adolescente , Algoritmos , Criança , Técnicas de Apoio para a Decisão , Diagnóstico Diferencial , Distonia/classificação , Distonia/etiologia , Distonia/genética , Testes Genéticos , Humanos
16.
Eur Heart J ; 35(32): 2165-73, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24558114

RESUMO

AIM: Peripartum cardiomyopathy (PPCM) can be an initial manifestation of familial dilated cardiomyopathy (DCM). We aimed to identify mutations in families that could underlie their PPCM and DCM. METHODS AND RESULTS: We collected 18 families with PPCM and DCM cases from various countries. We studied the clinical characteristics of the PPCM patients and affected relatives, and applied a targeted next-generation sequencing (NGS) approach to detect mutations in 48 genes known to be involved in inherited cardiomyopathies. We identified 4 pathogenic mutations in 4 of 18 families (22%): 3 in TTN and 1 in BAG3. In addition, we identified 6 variants of unknown clinical significance that may be pathogenic in 6 other families (33%): 4 in TTN, 1 in TNNC1, and 1 in MYH7. Measurements of passive force in single cardiomyocytes and titin isoform composition potentially support an upgrade of one of the variants of unknown clinical significance in TTN to a pathogenic mutation. Only 2 of 20 PPCM cases in these families showed the recovery of left ventricular function. CONCLUSION: Targeted NGS shows that potentially causal mutations in cardiomyopathy-related genes are common in families with both PPCM and DCM. This supports the earlier finding that PPCM can be part of familial DCM. Our cohort is particularly characterized by a high proportion of TTN mutations and a low recovery rate in PPCM cases.


Assuntos
Cardiomiopatias/genética , Conectina/genética , Mutação/genética , Transtornos Puerperais/genética , Adulto , Cardiomiopatia Dilatada/genética , Estudos de Coortes , Feminino , Humanos , Linhagem , Fator de Transcrição STAT3/genética , Adulto Jovem
17.
Mov Disord ; 29(1): 139-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24458321

RESUMO

BACKGROUND: Ramsay Hunt syndrome (progressive myoclonus ataxia) is a descriptive diagnosis characterized by myoclonus, ataxia, and infrequent seizures. Often the etiology cannot be determined. Recently, a mutation in the GOSR2 gene (c.430G>T, p.Gly144Trp) was reported in 6 patients with childhood-onset progressive ataxia and myoclonus. METHODS: We evaluated 5 patients with cortical myoclonus, ataxia, and areflexia. RESULTS: All 5 patients had the same homozygous mutation in GOSR2. Here we present their clinical and neurophysiological data. Our patients (aged 7-26 years) all originated from the northern Netherlands and showed a remarkably homogeneous phenotype. Myoclonus and ataxia were relentlessly progressive over the years. Electromyography revealed signs of sensory neuronopathy or anterior horn cell involvement, or both, in all patients with absent reflexes. CONCLUSIONS: Based on the presented phenotype, we would advise movement disorder specialists to consider mutation analysis of GOSR2 in patients with Ramsay Hunt syndrome, especially when they also have areflexia.


Assuntos
Músculo Esquelético/fisiopatologia , Mutação , Dissinergia Cerebelar Mioclônica/genética , Proteínas Qb-SNARE/genética , Adulto , Criança , Análise Mutacional de DNA , Humanos , Masculino , Dissinergia Cerebelar Mioclônica/fisiopatologia , Miografia , Fenótipo , Adulto Jovem
18.
Hum Mutat ; 34(7): 1035-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23568810

RESUMO

Mutation detection through exome sequencing allows simultaneous analysis of all coding sequences of genes. However, it cannot yet replace Sanger sequencing (SS) in diagnostics because of incomplete representation and coverage of exons leading to missing clinically relevant mutations. Targeted next-generation sequencing (NGS), in which a selected fraction of genes is sequenced, may circumvent these shortcomings. We aimed to determine whether the sensitivity and specificity of targeted NGS is equal to those of SS. We constructed a targeted enrichment kit that includes 48 genes associated with hereditary cardiomyopathies. In total, 84 individuals with cardiomyopathies were sequenced using 151 bp paired-end reads on an Illumina MiSeq sequencer. The reproducibility was tested by repeating the entire procedure for five patients. The coverage of ≥30 reads per nucleotide, our major quality criterion, was 99% and in total ∼21,000 variants were identified. Confirmation with SS was performed for 168 variants (155 substitutions, 13 indels). All were confirmed, including a deletion of 18 bp and an insertion of 6 bp. The reproducibility was nearly 100%. We demonstrate that targeted NGS of a disease-specific subset of genes is equal to the quality of SS and it can therefore be reliably implemented as a stand-alone diagnostic test.


Assuntos
Cardiomiopatias , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Éxons , Humanos , Mutação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Am J Hum Genet ; 87(5): 593-603, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21035104

RESUMO

Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.


Assuntos
Encefalinas/genética , Mutação de Sentido Incorreto , Precursores de Proteínas/genética , Degenerações Espinocerebelares/genética , Cerebelo/química , Cerebelo/citologia , Dinorfinas/análise , Encefalinas/análise , Feminino , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Humanos , Masculino , Linhagem , Precursores de Proteínas/análise , Células de Purkinje/química
20.
Clin Chem ; 59(4): 705-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23315481

RESUMO

BACKGROUND: Noninvasive trisomy 21 detection performed by use of massively parallel sequencing is achievable with high diagnostic sensitivity and low false-positive rates. Detection of fetal trisomy 18 and 13 has been reported as well but seems to be less accurate with the use of this approach. The reduced accuracy can be explained by PCR-introduced guanine-cytosine (GC) bias influencing sequencing data. Previously, we demonstrated that sequence data generated by single molecule sequencing show virtually no GC bias and result in a more pronounced noninvasive detection of fetal trisomy 21. In this study, single molecule sequencing was used for noninvasive detection of trisomy 18 and 13. METHODS: Single molecule sequencing was performed on the Helicos platform with free DNA isolated from maternal plasma from 11 weeks of gestation onward (n = 17). Relative sequence tag density ratios were calculated against male control plasma samples and results were compared to those of previous karyotyping. RESULTS: All trisomy 18 fetuses were identified correctly with a diagnostic sensitivity and specificity of 100%. However, low diagnostic sensitivity and specificity were observed for fetal trisomy 13 detection. CONCLUSIONS: We successfully applied single molecule sequencing in combination with relative sequence tag density calculations for noninvasive trisomy 18 detection using free DNA from maternal plasma. However, noninvasive trisomy 13 detection was not accurate and seemed to be influenced by more than just GC content.


Assuntos
Cromossomos Humanos Par 18 , Trissomia/diagnóstico , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA