Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768451

RESUMO

Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/metabolismo , Sinapses/metabolismo , Junção Neuromuscular/metabolismo , Criopreservação/métodos , Microscopia Eletrônica , Proteínas de Drosophila/metabolismo
2.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064048

RESUMO

Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.


Assuntos
Neuroproteção/fisiologia , Animais , Lesões Encefálicas/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/metabolismo
3.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063730

RESUMO

Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII-/- mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII-/- mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII-/- mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII-/- mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII-/- mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery.


Assuntos
Lesões Encefálicas Traumáticas/genética , Disfunção Cognitiva/genética , Deficiência do Fator XII/genética , Fator XII/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/complicações , Disfunção Cognitiva/patologia , Corticosterona/sangue , Modelos Animais de Doenças , Deficiência do Fator XII/sangue , Deficiência do Fator XII/complicações , Deficiência do Fator XII/patologia , Humanos , Memória/fisiologia , Camundongos , Camundongos Knockout , Agregação Plaquetária/genética , Complexo Glicoproteico GPIb-IX de Plaquetas
4.
J Neuroinflammation ; 14(1): 39, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219400

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. METHODS: Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1ß by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. RESULTS: We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. CONCLUSIONS: Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation.


Assuntos
Edema Encefálico/metabolismo , Edema Encefálico/prevenção & controle , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/prevenção & controle , Fator XIIa/antagonistas & inibidores , Fator XIIa/metabolismo , Animais , Bradicinina/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/prevenção & controle , Fator XIIa/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Ann Neurol ; 79(6): 970-82, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043916

RESUMO

OBJECTIVE: Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury. METHODS: We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury. RESULTS: Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage. INTERPRETATION: The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies. Ann Neurol 2016;79:970-982.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Fator XII/uso terapêutico , Fator XIIa/antagonistas & inibidores , Proteínas de Insetos/uso terapêutico , Trombose Intracraniana/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Albumina Sérica/uso terapêutico , Adulto , Idoso , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Fator XII/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neuroimagem , Agregação Plaquetária/fisiologia , Albumina Sérica Humana , Adulto Jovem
6.
J Neuroinflammation ; 13(1): 140, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266706

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. METHODS: A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo µPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [(18)F]DPA-714 was performed on day 1, 7, and 16 and [(18)F]FDG-µPET imaging for energy metabolism on days 2-5 after trauma using freshly synthesized radiotracers. Immediately after [(18)F]DPA-714-µPET imaging on days 7 and 16, cellular identity of the [(18)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. RESULTS: Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [(18)F]DPA-714-µPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [(18)F]FDG uptake on days 2-5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [(18)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [(18)F]DPA-714 was not increased in autoradiography or in µPET imaging. CONCLUSIONS: [(18)F]DPA-714 uptake in µPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.


Assuntos
Autorradiografia/métodos , Fluordesoxiglucose F18/metabolismo , Traumatismos Cranianos Fechados/diagnóstico por imagem , Traumatismos Cranianos Fechados/metabolismo , Microglia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Radioisótopos de Flúor/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Stroke ; 46(5): 1180-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25765725

RESUMO

BACKGROUND AND PURPOSE: Recently, we reported high seroprevalence (age-dependent up to >19%) of N-methyl-d-aspartate-receptor subunit NR1 (NMDAR1) autoantibodies in both healthy and neuropsychiatrically ill subjects (N=4236). Neuropsychiatric syndrome relevance was restricted to individuals with compromised blood-brain barrier, for example, apolipoprotein E4 (APOE4) carrier status, both clinically and experimentally. We now hypothesized that these autoantibodies may upon stroke be protective in individuals with hitherto intact blood-brain barrier, but harmful for subjects with chronically compromised blood-brain barrier. METHODS: Of 464 patients admitted with acute ischemic stroke in the middle cerebral artery territory, blood for NMDAR1 autoantibody measurements and APOE4 carrier status as indicator of a preexisting leaky blood-brain barrier was collected within 3 to 5 hours after stroke. Evolution of lesion size (delta day 7-1) in diffusion-weighted magnetic resonance imaging was primary outcome parameter. In subgroups, NMDAR1 autoantibody measurements were repeated on days 2 and 7. RESULTS: Of all 464 patients, 21.6% were NMDAR1 autoantibody-positive (immunoglobulin M, A, or G) and 21% were APOE4 carriers. Patients with magnetic resonance imaging data available on days 1 and 7 (N=384) were divided into 4 groups according to NMDAR1 autoantibody and APOE4 status. Groups were comparable in all stroke-relevant presenting characteristics. The autoantibody+/APOE4- group had a smaller mean delta lesion size compared with the autoantibody-/APOE4- group, suggesting a protective effect of circulating NMDAR1 autoantibodies. In contrast, the autoantibody+/APOE4+ group had the largest mean delta lesion area. NMDAR1 autoantibody serum titers dropped on day 2 and remounted by day 7. CONCLUSIONS: Dependent on blood-brain barrier integrity before an acute ischemic brain injury, preexisting NMDAR1 autoantibodies seem to be beneficial or detrimental.


Assuntos
Autoanticorpos/análise , Isquemia Encefálica/patologia , Receptores de N-Metil-D-Aspartato/imunologia , Acidente Vascular Cerebral/patologia , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Progressão da Doença , Feminino , Heterozigoto , Humanos , Infarto da Artéria Cerebral Média/patologia , Hemorragias Intracranianas/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Soroepidemiológicos , Resultado do Tratamento
8.
Mol Med ; 21: 185-96, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25811991

RESUMO

Parent-of-origin imprints have been implicated in the regulation of neural differentiation and brain development. Previously we have shown that, despite the lack of a paternal genome, human parthenogenetic (PG) embryonic stem cells (hESCs) can form proliferating neural stem cells (NSCs) that are capable of differentiation into physiologically functional neurons while maintaining allele-specific expression of imprinted genes. Since biparental ("normal") hESC-derived NSCs (N NSCs) are targeted by immune cells, we characterized the immunogenicity of PG NSCs. Flow cytometry and immunocytochemistry revealed that both N NSCs and PG NSCs exhibited surface expression of human leukocyte antigen (HLA) class I but not HLA-DR molecules. Functional analyses using an in vitro mixed lymphocyte reaction assay resulted in less proliferation of peripheral blood mononuclear cells (PBMC) with PG compared with N NSCs. In addition, natural killer (NK) cells cytolyzed PG less than N NSCs. At a molecular level, expression analyses of immune regulatory factors revealed higher HLA-G levels in PG compared with N NSCs. In line with this finding, MIR152, which represses HLA-G expression, is less transcribed in PG compared with N cells. Blockage of HLA-G receptors ILT2 and KIR2DL4 on natural killer cell leukemia (NKL) cells increased cytolysis of PG NSCs. Together this indicates that PG NSCs have unique immunological properties due to elevated HLA-G expression.


Assuntos
Diferenciação Celular , Citotoxicidade Imunológica , Células-Tronco Embrionárias/citologia , Expressão Gênica , Antígenos HLA-G/genética , Células Matadoras Naturais/imunologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/metabolismo , Apoptose/genética , Apoptose/imunologia , Linhagem Celular , Regulação da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Antígenos HLA-G/imunologia , Antígenos HLA-G/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , MicroRNAs/genética , Células-Tronco Neurais/citologia
9.
Mol Med ; 19: 399-408, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24408113

RESUMO

Induced cell fate changes by reprogramming of somatic cells offers an efficient strategy to generate autologous pluripotent stem (iPS) cells from any adult cell type. The potential of iPS cells to differentiate into various cell types is well established, however the efficiency to produce functional neurons from iPS cells remains modest. Here, we generated panneural progenitor cells (pNPCs) from mouse iPS cells and investigated the effect of the neurotrophic growth factor erythropoietin (EPO) on their survival, proliferation and neurodifferentiation. Under neural differentiation conditions, iPS-derived pNPCs gave rise to microtubule-associated protein-2 positive neuronlike cells (34% to 43%) and platelet-derived growth factor receptor positive oligodendrocytelike cells (21% to 25%) while less than 1% of the cells expressed the astrocytic marker glial fibrillary acidic protein. Neuronlike cells generated action potentials and developed active presynaptic terminals. The pNPCs expressed EPO receptor (EPOR) mRNA and displayed functional EPOR signaling. In proliferating cultures, EPO (0.1-3 U/mL) slightly improved pNPC survival but reduced cell proliferation and neurosphere formation in a concentration-dependent manner. In differentiating cultures EPO facilitated neurodifferentiation as assessed by the increased number of ß-III-tubulin positive neurons. Our results show that EPO inhibits iPS pNPC self-renewal and promotes neurogenesis.


Assuntos
Eritropoetina/farmacologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese , Animais , Proliferação de Células , Sobrevivência Celular , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/fisiologia , Oligodendroglia/fisiologia , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Potenciais Sinápticos
10.
Neuroprotection ; 1(1): 9-19, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37671067

RESUMO

Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.

11.
J Clin Med ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297997

RESUMO

Traumatic brain injury (TBI) is the leading cause of death and disability in polytrauma and is often accompanied by concomitant injuries. We conducted a retrospective matched-pair analysis of data from a 10-year period from the multicenter database TraumaRegister DGU® to analyze the impact of a concomitant femoral fracture on the outcome of TBI patients. A total of 4508 patients with moderate to critical TBI were included and matched by severity of TBI, American Society of Anesthesiologists (ASA) risk classification, initial Glasgow Coma Scale (GCS), age, and sex. Patients who suffered combined TBI and femoral fracture showed increased mortality and worse outcome at the time of discharge, a higher chance of multi-organ failure, and a rate of neurosurgical intervention. Especially those with moderate TBI showed enhanced in-hospital mortality when presenting with a concomitant femoral fracture (p = 0.037). The choice of fracture treatment (damage control orthopedics vs. early total care) did not impact mortality. In summary, patients with combined TBI and femoral fracture have higher mortality, more in-hospital complications, an increased need for neurosurgical intervention, and inferior outcome compared to patients with TBI solely. More investigations are needed to decipher the pathophysiological consequences of a long-bone fracture on the outcome after TBI.

12.
Cell Rep ; 40(12): 111382, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130490

RESUMO

Rab3A-interacting molecule (RIM) is crucial for fast Ca2+-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α-/- and wild-type mice. In RIM1α-/-, AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0-2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α-/- is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs.


Assuntos
Sinapses , Vesículas Sinápticas , Animais , Camundongos , Fibras Musgosas Hipocampais/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura
13.
Brain ; 133(11): 3166-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20884644

RESUMO

Synaptic inhibition is a central factor in the fine tuning of neuronal activity in the central nervous system. Symptoms consistent with reduced inhibition such as stiffness, spasms and anxiety occur in paraneoplastic stiff person syndrome with autoantibodies against the intracellular synaptic protein amphiphysin. Here we show that intrathecal application of purified anti-amphiphysin immunoglobulin G antibodies induces stiff person syndrome-like symptoms in rats, including stiffness and muscle spasms. Using in vivo recordings of Hoffmann reflexes and dorsal root potentials, we identified reduced presynaptic GABAergic inhibition as an underlying mechanism. Anti-amphiphysin immunoglobulin G was internalized into neurons by an epitope-specific mechanism and colocalized in vivo with presynaptic vesicular proteins, as shown by stimulation emission depletion microscopy. Neurons from amphiphysin deficient mice that did not internalize the immunoglobulin provided additional evidence of the specificity in antibody uptake. GABAergic synapses appeared more vulnerable than glutamatergic synapses to defective endocytosis induced by anti-amphiphysin immunoglobulin G, as shown by increased clustering of the endocytic protein AP180 and by defective loading of FM 1-43, a styryl dye used to label cell membranes. Incubation of cultured neurons with anti-amphiphysin immunoglobulin G reduced basal and stimulated release of γ-aminobutyric acid substantially more than that of glutamate. By whole-cell patch-clamp analysis of GABAergic inhibitory transmission in hippocampus granule cells we showed a faster, activity-dependent decrease of the amplitude of evoked inhibitory postsynaptic currents in brain slices treated with antibodies against amphiphysin. We suggest that these findings may explain the pathophysiology of the core signs of stiff person syndrome at the molecular level and show that autoantibodies can alter the function of inhibitory synapses in vivo upon binding to an intraneuronal key protein by disturbing vesicular endocytosis.


Assuntos
Autoanticorpos/uso terapêutico , Proteínas do Tecido Nervoso/imunologia , Inibição Neural/imunologia , Rigidez Muscular Espasmódica/imunologia , Rigidez Muscular Espasmódica/terapia , Ácido gama-Aminobutírico/metabolismo , Idoso , Animais , Autoanticorpos/administração & dosagem , Autoanticorpos/fisiologia , Células Cultivadas , Endocitose/imunologia , Feminino , Humanos , Imunização Passiva/métodos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/fisiologia , Imunoglobulina G/uso terapêutico , Potenciais Pós-Sinápticos Inibidores/fisiologia , Injeções Espinhais , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos Lew , Rigidez Muscular Espasmódica/patologia , Ácido gama-Aminobutírico/deficiência
14.
Exp Neurol ; 341: 113721, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33852877

RESUMO

Traumatic brain injury (TBI) is often associated with sustained attention and memory deficits. As persisting neuroinflammation and neurodegeneration may contribute to posttraumatic psychomotor dysfunction, we studied the relationship of brain cellular reactions three months after a weight-drop closed head injury in male mice with posttraumatic learning and memory using automated home-cage monitoring of socially housed mice in IntelliCages as well as tests for locomotor activity, anxiety and forepaw fine motor skills. One month after TBI, deficits in place learning and cognitive flexibility in reverse learning were clearly detectable in IntelliCages and these memory deficits correlated with the initial trauma severity on the functional neuroscore. While sucrose preference or its extinction were not influenced by TBI, traumatized mice performed significantly worse in a complex episodic memory learning task. In consecutive locomotor and forepaw skilled use tests, posttraumatic hyperactivity and impairment of contralateral paw use were evident. Analysis of cellular reactions to TBI three months after injury in selected defined regions of interest in the immediate lesion, ipsi- and contralateral frontoparietal cortex and hippocampus revealed a persistent microgliosis and astrogliosis which were accompanied by iron-containing macrophages and myelin degradation in the lesion area as well as with axonal damage in the neighboring cortical regions. Microglial and astroglial reactions in cortex showed a positive correlation with the initial trauma severity and a negative correlation with the spatial and episodic memory indicating a role of brain inflammatory reactions in posttraumatic memory deficits.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Gliose/patologia , Gliose/fisiopatologia , Índice de Gravidade de Doença , Aprendizagem Espacial/fisiologia , Animais , Lesões Encefálicas Traumáticas/complicações , Gliose/etiologia , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
15.
Sci Rep ; 11(1): 14062, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234256

RESUMO

Medulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma.


Assuntos
Antineoplásicos/farmacologia , Axitinibe/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Amplificação de Genes , Meduloblastoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
16.
Cell Rep ; 37(1): 109770, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610300

RESUMO

Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.


Assuntos
Drosophila melanogaster/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Análise por Conglomerados , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Larva/metabolismo , Microscopia de Fluorescência , Junção Neuromuscular/metabolismo , Poliaminas/farmacologia , Receptores Ionotrópicos de Glutamato/deficiência , Receptores Ionotrópicos de Glutamato/genética , Transmissão Sináptica/efeitos dos fármacos , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo
17.
Commun Biol ; 4(1): 407, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767432

RESUMO

Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 µm, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 µm thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons.


Assuntos
Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Animais , Masculino , Camundongos , Imagem Individual de Molécula
18.
J Neurotrauma ; 37(2): 295-304, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31441378

RESUMO

The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score. The expression of interleukin (IL)-6, IL-1ß, tumor necrosis factor-α, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 genes was measured at 12 h and 1, 3, and 14 days after injury. Before the injury, micro-computed tomography (micro-CT) was performed to quantify skull thickness at the impact site. With a conventional tip diameter of 2 mm, 33% of mice showed fractures of the parietal bone; the 5 mm tip produced only 10% fractures. Compared with mice without fractures, mice with fractures had a severity-dependent worse functional outcome and a more pronounced upregulation of inflammatory genes in the brain. Older mice were associated with thicker parietal bones and were less prone to skull fractures. In addition, mice that underwent traumatic brain injury (TBI) with skull fracture had macroscopic brain damage because of skull depression. Skull fractures explain a considerable proportion of the variability observed in the WD model in mice-i.e., mice with skull fractures have a much stronger inflammatory response than do mice without fractures. Using older mice with thicker skull bones and an impact cone with a larger diameter reduces the rate of skull fractures and the variability in this very useful closed-head TBI model.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Modelos Animais de Doenças , Traumatismos Cranianos Fechados/complicações , Inflamação/etiologia , Fraturas Cranianas/etiologia , Animais , Masculino , Camundongos
19.
Glia ; 57(7): 693-702, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18985736

RESUMO

A small experimental cryolesion to the right parietal cortex of juvenile mice causes late-onset global brain atrophy with memory impairments, reminiscent of cognitive decline, and progressive brain matter loss in schizophrenia. However, the cellular events underlying this global neurodegeneration are not understood. Here we show, based on comprehensive stereological analysis, that early unilateral lesion causes immediate and lasting bilateral increase in the number of microglia in cingulate cortex and hippocampus, consistent with a chronic low-grade inflammatory process. Whereas the total number of neurons and astrocytes in these brain regions remain unaltered, pointing to a non- gliotic neurodegeneration (as seen in schizophrenia), the subgroup of parvalbumin-positive inhibitory GABAergic interneurons is increased bilaterally in the hippocampus, as is the expression of the GABA-synthesizing enzyme GAD67. Moreover, unilateral parietal lesion causes a decrease in the expression of synapsin1, suggesting impairment of presynaptic functions/neuroplasticity. Reduced expression of the myelin protein cyclic nucleotide phosphodiesterase, reflecting a reduction of oligodendrocytes, may further contribute to the observed brain atrophy. Remarkably, early intervention with recombinant human erythropoietin (EPO), a hematopoietic growth factor with multifaceted neuroprotective properties (intraperitoneal injection of 5000 IU/kg body weight every other day for 3 weeks), prevented all these neurodegenerative changes. To conclude, unilateral parietal lesion of juvenile mice induces a non- gliotic neurodegenerative process, susceptible to early EPO treatment. Although the detailed mechanisms remain to be defined, these profound EPO effects open new ways for prophylaxis and therapy of neuropsychiatric diseases, e.g. schizophrenia.


Assuntos
Lesões Encefálicas/complicações , Encéfalo/fisiopatologia , Gliose/complicações , Gliose/fisiopatologia , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/fisiopatologia , Animais , Astrócitos/fisiologia , Atrofia , Encéfalo/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/terapia , Temperatura Baixa , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Modelos Animais de Doenças , Eritropoetina/uso terapêutico , Gliose/patologia , Gliose/terapia , Glutamato Descarboxilase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/fisiologia , Parvalbuminas/metabolismo , Sinapsinas/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
Cell Signal ; 20(1): 154-62, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18006272

RESUMO

Thrombopoietin (TPO), a hematopoietic growth factor regulating platelet production, and its receptor (TPOR) were recently shown to be expressed in the brain where they exert proapoptotic activity. Here we used PC12 cells, an established model of neuronal differentiation, to investigate the effects of TPO on neuronal survival and differentiation. These cells expressed TPOR mRNA. TPO increased cell death in neuronally differentiated PC12 cells but had no effect in undifferentiated cells. Surprisingly, TPO inhibited nerve growth factor (NGF)-induced differentiation of PC12 cells in a dose- and time-dependent manner. This inhibition was dependent on the activity of Janus kinase-2 (JAK2). Using phospho-kinase arrays and Western blot we found downregulation of the NGF-stimulated phosphorylation of the extracellular signal-regulated kinase p42ERK by TPO with no effect on phosphorylation of Akt or stress kinases. NGF-induced phosphorylation of ERK-activating kinases, MEK1/2 and C-RAF was also reduced by TPO while NGF-induced RAS activation was not attenuated by TPO treatment. In contrast to its inhibitory effects on NGF signalling, TPO had no effect on epidermal growth factor (EGF)-stimulated ERK phosphorylation or proliferation of PC12 cells. Our data indicate that TPO via activation of its receptor-bound JAK2 delays the NGF-dependent acquisition of neuronal phenotype and decreases neuronal survival by suppressing NGF-induced ERK activity.


Assuntos
Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento Neural/fisiologia , Neurônios/citologia , Transdução de Sinais , Trombopoetina/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/fisiologia , MAP Quinase Quinase 1/metabolismo , Neurônios/fisiologia , Células PC12 , Proteínas Proto-Oncogênicas c-raf/metabolismo , Ratos , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA