Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Blood ; 129(19): 2657-2666, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28283480

RESUMO

Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML.


Assuntos
DNA Mitocondrial/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilação Oxidativa , Fosfotransferases/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Replicação do DNA , Humanos , Camundongos SCID , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Zalcitabina/metabolismo
2.
Haematologica ; 104(5): 963-972, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30573504

RESUMO

Mitochondrial DNA encodes 13 proteins that comprise components of the respiratory chain that maintain oxidative phosphorylation. The replication of mitochondrial DNA is performed by the sole mitochondrial DNA polymerase γ. As acute myeloid leukemia (AML) cells and stem cells have an increased reliance on oxidative phosphorylation, we sought to evaluate polymerase γ inhibitors in AML. The thymidine dideoxynucleoside analog, alovudine, is an inhibitor of polymerase γ. In AML cells, alovudine depleted mitochondrial DNA, reduced mitochondrial encoded proteins, decreased basal oxygen consumption, and decreased cell proliferation and viability. To evaluate the effects of polymerase γ inhibition with alovudine in vivo, mice were xenografted with OCI-AML2 cells and then treated with alovudine. Systemic administration of alovudine reduced leukemic growth without evidence of toxicity and decreased levels of mitochondrial DNA in the leukemic cells. We also showed that alovudine increased the monocytic differentiation of AML cells. Genetic knockdown and other chemical inhibitors of polymerase γ also promoted AML differentiation, but the effects on AML differentiation were independent of reductions in oxidative phosphorylation or respiratory chain proteins. Thus, we have identified a novel mechanism by which mitochondria regulate AML fate and differentiation independent of oxidative phosphorylation. Moreover, we highlight polymerase γ inhibitors, such as alovudine, as novel therapeutic agents for AML.


Assuntos
Diferenciação Celular/efeitos dos fármacos , DNA Polimerase gama/antagonistas & inibidores , Didesoxinucleosídeos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/patologia , Monócitos/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antivirais/farmacologia , Apoptose , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Timidina/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Leuk Res ; 68: 22-28, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518628

RESUMO

We evaluated outcomes of 100 patients with high risk AML treated with Ida-FLAG induction as first-line therapy. 72 achieved remission with one cycle; 19 did not. High risk cytogenetics and TP53 mutations were associated with failure to achieve remission. In those reaching remission, allogeneic bone marrow transplantation was associated with better relapse-free and overall survival. Those not achieving remission with induction therapy were extremely unlikely to reach remission with further therapy and had a dismal prognosis. Exploratory molecular analysis confirmed persistence of the dominant genetic mutations identified at diagnosis. Ex vivo chemosensitivity did not demonstrate significant differences between responders and non-responders. Thus, Ida-FLAG induction has a high chance of inducing remission in patients with high risk AML. Those achieving remission require allogeneic transplantation to achieve cure; those not achieving remission rarely respond to salvage chemotherapy and have a dismal outcome. Alternatives to conventional chemotherapy must be considered in this group.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia de Indução , Leucemia Mieloide Aguda/tratamento farmacológico , Vidarabina/análogos & derivados , Adolescente , Adulto , Idoso , Citarabina/uso terapêutico , Feminino , Genes p53 , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Idarubicina/uso terapêutico , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Indução de Remissão , Estudos Retrospectivos , Resultado do Tratamento , Vidarabina/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA