Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 42, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519881

RESUMO

BACKGROUND: The formation and accumulation of cholesterol crystals (CC) at the lesion site is a hallmark of atherosclerosis. Although studies have shown the importance of vascular smooth muscle cells (VSMCs) in the disease atherosclerosis, little is known about the molecular mechanism behind the uptake of CC in VSMCs and their role in modulating immune response. METHODS: Human aortic smooth muscle cells were cultured and treated with CC. CC uptake and CC mediated signaling pathway and protein induction were studied using flow cytometry, confocal microscopy, western blot and Olink proteomics. Conditioned medium from CC treated VSMCs was used to study neutrophil adhesion, ROS production and phagocytosis. Neutrophil extracellular traps (NETs) formations were visualized using confocal microscopy. RESULTS: VSMCs and macrophages were found around CC clefts in human carotid plaques. CC uptake in VSMCs are largely through micropinocytosis and phagocytosis via PI3K-AkT dependent pathway. The uptake of CC in VSMCs induce the release inflammatory proteins, including IL-33, an alarming cytokine. Conditioned medium from CC treated VSMCs can induce neutrophil adhesion, neutrophil reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. IL-33 neutralization in conditioned medium from CC treated VSMCs inhibited neutrophil ROS production and NETs formation. CONCLUSION: We demonstrate that VSMCs due to its vicinity to CC clefts in human atherosclerotic lesion can modulate local immune response and we further reveal that the interaction between CC and VSMCs impart an inflammatory milieu in the atherosclerotic microenvironment by promoting IL-33 dependent neutrophil influx and NETs formation.


Assuntos
Aterosclerose , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Citocinas/metabolismo , Músculo Liso Vascular/metabolismo , Interleucina-33 , Espécies Reativas de Oxigênio/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Miócitos de Músculo Liso/metabolismo
3.
Mediators Inflamm ; 2020: 4623107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410854

RESUMO

BACKGROUND: Interleukin 6 (IL6) is a multifunctional cytokine produced by various cells, including vascular endothelial cells. IL6 has both pro- and non-/anti-inflammatory functions, and the response to IL6 is dependent on whether it acts via the membrane-bound IL6 receptor α (IL6Rα) (classic signaling) or the soluble form of the receptor (transsignaling). As human endothelial cells produce IL6 and at the same time express IL6Rα, we hypothesized that IL6 may have autocrine functions. METHODS: Knockdown of IL6 in cultured human endothelial cells was performed using siRNA. Knockdown efficiency was evaluated using ELISA. RNA sequencing was employed to characterize the transcriptional consequence of IL6 knockdown, and Ingenuity Pathway Analysis was used to further explore the functional roles of IL6. RESULTS: Knockdown of IL6 in cultured endothelial cells resulted in a 84-92% reduction in the release of IL6. Knockdown of IL6 resulted in dramatic changes in transcriptional pattern; knockdown of IL6 in the absence of soluble IL6Rα (sIL6Rα) led to differential regulation of 1915 genes, and knockdown of IL6 in the presence of sIL6Rα led to differential regulation of 1967 genes (fold change 1.5, false discovery rate < 0.05). Pathway analysis revealed that the autocrine functions of IL6 in human endothelial cells are mainly related to basal cellular functions such as regulation of cell cycle, signaling, and cellular movement. Furthermore, we found that knockdown of IL6 activates functions related to adhesion, binding, and interaction of endothelial cells, which seem to be mediated mainly via STAT3. CONCLUSION: In this study, a large number of novel genes that are under autocrine regulation by IL6 in human endothelial cells were identified. Overall, our data indicate that IL6 acts in an autocrine manner to regulate basal cellular functions, such as cell cycle regulation, signaling, and cellular movement, and suggests that the autocrine functions of IL6 in human endothelial cells are mediated via IL6 classic signaling.


Assuntos
Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interleucina-6/metabolismo , Transcrição Gênica , Citocinas/metabolismo , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina-6 , Fator de Transcrição STAT3 , Análise de Sequência de RNA , Transdução de Sinais
4.
Cell Commun Signal ; 16(1): 55, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185178

RESUMO

BACKGROUND: IL-6 classic signaling is linked to anti-inflammatory functions while the trans-signaling is associated with pro-inflammatory responses. Classic signaling is induced via membrane-bound IL-6 receptor (IL-6R) whereas trans-signaling requires prior binding of IL-6 to the soluble IL-6R. In both cases, association with the signal transducing gp130 receptor is compulsory. However, differences in the downstream signaling mechanisms of IL-6 classic- versus trans-signaling remains largely elusive. METHODS: In this study, we used flow cytometry, quantitative PCR, ELISA and immuno-blotting techniques to investigate IL-6 classic and trans-signaling mechanisms in Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS: We show that both IL-6R and gp130 are expressed on the surface of human vascular endothelial cells, and that the expression is affected by pro-inflammatory stimuli. In contrast to IL-6 classic signaling, IL-6 trans-signaling induces the release of the pro-inflammatory chemokine Monocyte Chemoattractant Protein-1 (MCP-1) from human vascular endothelial cells. In addition, we reveal that the classic signaling induces activation of the JAK/STAT3 pathway while trans-signaling also activates the PI3K/AKT and the MEK/ERK pathways. Furthermore, we demonstrate that MCP-1 induction by IL-6 trans-signaling requires simultaneous activation of the JAK/STAT3 and PI3K/AKT pathways. CONCLUSIONS: Collectively, our study reports molecular differences in IL-6 classic- and trans-signaling in human vascular endothelial cells; and elucidates the pathways which mediate MCP-1 induction by IL-6 trans-signaling.


Assuntos
Células Endoteliais/patologia , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Quimiocina CCL2/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/metabolismo , Inflamação/patologia
5.
Infect Immun ; 83(11): 4256-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283334

RESUMO

Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.


Assuntos
Adesinas Bacterianas/metabolismo , Angiopoietina-1/genética , Angiopoietina-2/genética , Aorta/citologia , Infecções por Bacteroidaceae/genética , Cisteína Endopeptidases/metabolismo , Miócitos de Músculo Liso/metabolismo , Periodontite/microbiologia , Porphyromonas gingivalis/enzimologia , Adesinas Bacterianas/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Aorta/metabolismo , Aorta/microbiologia , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Células Cultivadas , Cisteína Endopeptidases/genética , Cisteína Endopeptidases Gingipaínas , Humanos , Miócitos de Músculo Liso/microbiologia , Periodontite/genética , Periodontite/metabolismo , Porphyromonas gingivalis/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
6.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
7.
BMC Genomics ; 14: 770, 2013 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-24209892

RESUMO

BACKGROUND: Porphyromonas gingivalis is a gram-negative bacterium that causes destructive chronic periodontitis. In addition, this bacterium is also involved in the development of cardiovascular disease. The aim of this study was to investigate the effects of P. gingivalis infection on gene and protein expression in human aortic smooth muscle cells (AoSMCs) and its relation to cellular function. RESULTS: AoSMCs were exposed to viable P. gingivalis for 24 h, whereafter confocal fluorescence microscopy was used to study P. gingivalis invasion of AoSMCs. AoSMCs proliferation was evaluated by neutral red assay. Human genome microarray, western blot and ELISA were used to investigate how P. gingivalis changes the gene and protein expression of AoSMCs. We found that viable P. gingivalis invades AoSMCs, disrupts stress fiber structures and significantly increases cell proliferation. Microarray results showed that, a total of 982 genes were identified as differentially expressed with the threshold log2 fold change > |1| (adjust p-value <0.05). Using bioinformatic data mining, we demonstrated that up-regulated genes are enriched in gene ontology function of positive control of cell proliferation and down-regulated genes are enriched in the function of negative control of cell proliferation. The results from pathway analysis revealed that all the genes belonging to these two categories induced by P. gingivalis were enriched in 25 pathways, including genes of Notch and TGF-beta pathways. CONCLUSIONS: This study demonstrates that P. gingivalis is able to invade AoSMCs and stimulate their proliferation. The activation of TGF-beta and Notch signaling pathways may be involved in the bacteria-mediated proliferation of AoSMCs. These findings further support the association between periodontitis and cardiovascular diseases.


Assuntos
Gengiva/microbiologia , Porphyromonas gingivalis/genética , Receptores Notch/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Aorta/metabolismo , Aorta/microbiologia , Proliferação de Células , Células Cultivadas , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/microbiologia , Porphyromonas gingivalis/patogenicidade , Receptores Notch/genética , Transdução de Sinais/genética , Transcriptoma , Fator de Crescimento Transformador beta/genética
8.
Clin Sci (Lond) ; 125(8): 401-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23611467

RESUMO

Inflammation is a key factor in the development of atherosclerotic coronary artery disease. It is promoted through the inflammasome, a molecular machine that produces IL (interleukin)-1ß in response to cholesterol crystal accumulation in macrophages. The CARD8 (caspase recruitment domain 8) protein modulates this process by suppressing caspase 1 and the transcription factor NF-κB (nuclear factor κB). The expression of CARD8 mRNA was examined in atherosclerotic vascular tissue and the impact on MI (myocardial infarction) of a polymorphism in the CARD8 gene determined. CARD8 mRNA was analysed by microarray of human atherosclerotic tissue and compared with transplant donor arterial tissue. Microarray analysis was performed for proximal genes associated with the rs2043211 locus in plaque. The CARD8 rs2043211 polymorphism was analysed by genotyping of two Swedish MI cohorts, FIA (First Myocardial Infarction in Northern Sweden) and SCARF (Stockholm Coronary Atherosclerosis Risk Factor). The CRP (C-reactive protein) level was measured in both cohorts, but the levels of the pro-inflammatory cytokines IL-1ß, IL-18, TNF (tumour necrosis factor) and MCP-1 (monocyte chemoattractant protein) were measured in sera available from the SCARF cohort. CARD8 mRNA was highly expressed in atherosclerotic plaques compared with the expression in transplant donor vessel (P<0.00001). The minor allele was associated with lower expression of CARD8 in the plaques, suggesting that CARD8 may promote inflammation. Carriers of the minor allele of the rs2043211 polymorphism also displayed lower circulating CRP and lower levels of the pro-atherosclerotic chemokine MCP-1. However, no significant association could be detected between this polymorphism and MI in the two cohorts. Genetic alterations in the CARD8 gene therefore seem to be of limited importance for the development of MI.


Assuntos
Aterosclerose/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Perfilação da Expressão Gênica , Inflamação/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Aterosclerose/sangue , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Quimiocina CCL2/sangue , Estudos de Coortes , Citocinas/sangue , Frequência do Gene , Genótipo , Humanos , Imunidade Inata/genética , Inflamação/sangue , Mediadores da Inflamação/sangue , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Análise de Sequência com Séries de Oligonucleotídeos , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética , Fatores de Risco , Suécia
9.
Atherosclerosis ; 371: 41-53, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996622

RESUMO

BACKGROUND AND AIMS: Laminins are essential components of the endothelial basement membrane, which predominantly contains LN421 and LN521 isoforms. Regulation of laminin expression under pathophysiological conditions is largely unknown. In this study, we aimed to investigate the role of IL-6 in regulating endothelial laminin profile and characterize the impact of altered laminin composition on the phenotype, inflammatory response, and function of endothelial cells (ECs). METHODS: HUVECs and HAECs were used for in vitro experiments. Trans-well migration experiments were performed using leukocytes isolated from peripheral blood of healthy donors. The BiKE cohort was used to assess expression of laminins in atherosclerotic plaques and healthy vessels. Gene and protein expression was analyzed using Microarray/qPCR and proximity extension assay, ELISA, immunostaining or immunoblotting techniques, respectively. RESULTS: Stimulation of ECs with IL-6+sIL-6R, but not IL-6 alone, reduces expression of laminin α4 (LAMA4) and increases laminin α5 (LAMA5) expression at the mRNA and protein levels. In addition, IL-6+sIL-6R stimulation of ECs differentially regulates the release of several proteins including CXCL8 and CXCL10, which collectively were predicted to inhibit granulocyte transmigration. Experimentally, we demonstrated that granulocyte migration is inhibited across ECs pre-treated with IL-6+sIL-6R. In addition, granulocyte migration across ECs cultured on LN521 was significantly lower compared to LN421. In human atherosclerotic plaques, expression of endothelial LAMA4 and LAMA5 is significantly lower compared to control vessels. Moreover, LAMA5-to-LAMA4 expression ratio was negatively correlated with granulocytic cell markers (CD177 and myeloperoxidase (MPO)) and positively correlated with T-lymphocyte marker CD3. CONCLUSIONS: We showed that expression of endothelial laminin alpha chains is regulated by IL-6 trans-signaling and contributes to inhibition of trans-endothelial migration of granulocytic cells. Further, expression of laminin alpha chains is altered in human atherosclerotic plaques and is related to intra-plaque abundance of leukocyte subpopulations.


Assuntos
Laminina , Placa Aterosclerótica , Humanos , Laminina/genética , Laminina/metabolismo , Interleucina-6/metabolismo , Células Endoteliais/metabolismo , Placa Aterosclerótica/metabolismo , Granulócitos/metabolismo
10.
J Mol Med (Berl) ; 101(12): 1615-1626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861809

RESUMO

Defective LDL-C clearance and hence its elevation in the circulation is an established risk factor for cardiovascular diseases (CVDs) such as myocardial infarction (MI). A soluble LDL-receptor (sLDL-R) has been detected in human plasma which correlates strongly with circulating LDL-C and classical conditions that promote chronic inflammation. However, the mechanistic interplay between sLDL-R, inflammation, and CVDs remains to be investigated. Here, we report that stimulation of HepG2 cells with TNF-α induces the release of sLDL-R into culture supernatants. In addition, TNF-α induces gene expression of peptidases ADAM-17 and MMP-14 in HepG2 cells, and inhibiting these peptidases using TMI 1 significantly reduces the TNF-α induced sLDL-R release. We found that a soluble form of recombinant LDL-R (100 nM) can strongly bind to LDL-C and form a stable complex (KD = E-12). Moreover, incubation of HepG2 cells with this recombinant LDL-R resulted in reduced LDL-C uptake in a dose-dependent manner. In a nested case-control study, we found that baseline sLDL-R in plasma is positively correlated with plasma total cholesterol level. Furthermore, a twofold increase in plasma sLDL-R was associated with a 55% increase in the risk of future MI [AOR = 1.55 (95% CI = 1.10-2.18)]. Nevertheless, mediation analyses revealed that a significant proportion of the association is mediated by elevation in plasma cholesterol level (indirect effect ß = 0.21 (95% CI = 0.07-0.38). Collectively, our study shows that sLDL-R is induced by a pro-inflammatory cytokine TNF-α via membrane shedding. Furthermore, an increase in sLDL-R could inhibit hepatic clearance of LDL-C increasing its half-life in the circulation and contributing to the pathogenesis of MI. KEY MESSAGES: TNF-α causes shedding of hepatocytic LDL-R through induction of ADAM-17 and MMP-14. sLDL-R binds strongly to LDL-C and inhibits its uptake by hepatocytic cells. Plasma sLDL-R is positively correlated with TNF-α and cholesterol. Plasma sLDL-R is an independent predictor of myocardial infarction (MI). Plasma cholesterol mediates the association between sLDL-R and MI.


Assuntos
Infarto do Miocárdio , Fator de Necrose Tumoral alfa , Humanos , LDL-Colesterol , Proteína ADAM17 , Metaloproteinase 14 da Matriz , Estudos de Casos e Controles , Colesterol , Fatores Imunológicos , Inflamação
11.
Am J Physiol Lung Cell Mol Physiol ; 303(6): L519-27, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22842216

RESUMO

Cigarette smoke (CS) is a well-established risk factor in the development of chronic obstructive pulmonary disease (COPD). In contrast, the extent to which CS exposure contributes to the development of the systemic manifestations of COPD, such as skeletal muscle dysfunction and wasting, remains largely unknown. Decreased skeletal muscle capillarization has been previously reported in early stages of COPD and might play an important role in the development of COPD-associated skeletal muscle abnormalities. To investigate the effects of chronic CS exposure on skeletal muscle capillarization and exercise tolerance, a mouse model of CS exposure was used. The 129/SvJ mice were exposed to CS for 6 mo, and the expression of putative elements of the hypoxia-angiogenic signaling cascade as well as muscle capillarization were studied. Additionally, functional tests assessing exercise tolerance/endurance were performed in mice. Compared with controls, skeletal muscles from CS-exposed mice exhibited significantly enhanced expression of von Hippel-Lindau tumor suppressor (VHL), ubiquitin-conjugating enzyme E2D1 (UBE2D1), and prolyl hydroxylase-2 (PHD2). In contrast, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression was reduced. Furthermore, reduced muscle fiber cross-sectional area, decreased skeletal muscle capillarization, and reduced exercise tolerance were also observed in CS-exposed animals. Taken together, the current results provide evidence linking chronic CS exposure and induction of VHL expression in skeletal muscles leading toward impaired hypoxia-angiogenesis signal transduction, reduced muscle fiber cross-sectional area, and decreased exercise tolerance.


Assuntos
Músculo Esquelético/irrigação sanguínea , Fumar/fisiopatologia , Animais , Capilares/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Prolina Dioxigenases do Fator Induzível por Hipóxia , Proteínas de Ligação ao Ferro/biossíntese , Camundongos , Músculo Esquelético/citologia , Pró-Colágeno-Prolina Dioxigenase/biossíntese , Enzimas de Conjugação de Ubiquitina/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/biossíntese
12.
Mol Med ; 18: 712-8, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22415012

RESUMO

All-trans retinoic acid, controlled by cytochrome P450, family 26 (CYP26) enzymes, potentially has beneficial effects in atherosclerosis treatment. This study investigates CYP26 subfamily B, polypeptide 1 (CYP26B1) in atherosclerosis and the effects of a genetic polymorphism in CYP26B1 on retinoid catabolism. We found that CYP26B1 mRNA was induced by retinoic acid in human atherosclerotic arteries, and CYP26B1 and the macrophage marker CD68 were colocalized in human atherosclerotic lesions. In mice, Cyp26B1 mRNA was higher in atherosclerotic arteries than in normal arteries. Databases were queried for nonsynonymous CYP26B1 single nucleotide polymorphisms (SNPs) and rs2241057 selected for further studies. Constructs of the CYP26B1 variants were created and used for production of purified proteins and transfection of macrophagelike cells. The minor variant catabolized retinoic acid with significantly higher efficiency, indicating that rs2241057 is functional and suggesting reduced retinoid availability in tissues with the minor variant. rs2241057 was investigated in a Stockholm Coronary Atherosclerosis Risk Factor (SCARF) subgroup. The minor allele was associated with slightly larger lesions, as determined by angiography. In summary, this study identifies the first CYP26B1 polymorphism that alters CYP26B1 capacity to metabolize retinoic acid. CYP26B1 was expressed in macrophage-rich areas of human atherosclerotic lesions, induced by retinoic acid and increased in murine atherosclerosis. Taken together, the results indicate that CYP26B1 capacity is genetically regulated and suggest that local CYP26B1 activity may influence atherosclerosis.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Polimorfismo de Nucleotídeo Único , Tretinoína/metabolismo , Alelos , Animais , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Expressão Gênica , Genótipo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Retinoico 4 Hidroxilase , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia
13.
J Chem Inf Model ; 52(10): 2631-7, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22985482

RESUMO

Homology models of CYP26B1 (cytochrome P450RAI2) and CYP26B1 spliced variant were derived using the crystal structure of cyanobacterial CYP120A1 as template for the model building. The quality of the homology models generated were carefully evaluated, and the natural substrate all-trans-retinoic acid (atRA), several tetralone-derived retinoic acid metabolizing blocking agents (RAMBAs), and a well-known potent inhibitor of CYP26B1 (R115866) were docked into the homology model of full-length cytochrome P450 26B1. The results show that in the model of the full-length CYP26B1, the protein is capable of distinguishing between the natural substrate (atRA), R115866, and the tetralone derivatives. The spliced variant of CYP26B1 model displays a reduced affinity for atRA compared to the full-length enzyme, in accordance with recently described experimental information.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Simulação de Acoplamento Molecular , Synechocystis/química , Tretinoína/química , Processamento Alternativo , Benzotiazóis/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Isoenzimas/química , Ácido Retinoico 4 Hidroxilase , Homologia Estrutural de Proteína , Synechocystis/enzimologia , Tetralonas/química , Termodinâmica , Triazóis/química
14.
Front Cardiovasc Med ; 9: 831039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282365

RESUMO

The balance between pro- and anti-inflammatory cytokines released by immune and non-immune cells plays a decisive role in the progression of atherosclerosis. Interleukin (IL)-17A has been shown to accelerate atherosclerosis. In this study, we investigated the effect on pro-inflammatory mediators and atherosclerosis development of an Affibody molecule that targets IL17A. Affibody molecule neutralizing IL17A, or sham were administered in vitro to human aortic smooth muscle cells (HAoSMCs) and murine NIH/3T3 fibroblasts and in vivo to atherosclerosis-prone, hyperlipidaemic ApoE-/- mice. Levels of mediators of inflammation and development of atherosclerosis were compared between treatments. Exposure of human smooth muscle cells and murine NIH/3T3 fibroblasts in vitro to αIL-17A Affibody molecule markedly reduced IL6 and CXCL1 release in supernatants compared with sham exposure. Treatment of ApoE-/- mice with αIL-17A Affibody molecule significantly reduced plasma protein levels of CXCL1, CCL2, CCL3, HGF, PDGFB, MAP2K6, QDPR, and splenocyte mRNA levels of Ccxl1, Il6, and Ccl20 compared with sham exposure. There was no significant difference in atherosclerosis burden between the groups. In conclusion, administration of αIL17A Affibody molecule reduced levels of pro-inflammatory mediators and attenuated inflammation in ApoE-/- mice.

15.
J Vasc Res ; 48(1): 23-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20606468

RESUMO

AIM: The cytochrome P450 enzymes of the CYP26 family are involved in the catabolism of the biologically active retinoid all-trans-retinoic acid (atRA). Since it is possible that an increased local CYP26 activity would reduce the effects of retinoids in vascular injury, we investigated the role of CYP26 in the regulation of atRA levels in human aortic smooth muscle cells (AOSMCs). METHODS: The expression of CYP26 was investigated in cultured AOSMCs using real-time PCR. The metabolism of atRA was analyzed by high-performance liquid chromatography, and the inhibitor R115866 or small interfering RNA (siRNA) was used to suppress CYP26 activity/expression. RESULTS: AOSMCs expressed CYP26B1 constitutively and atRA exposure augmented CYP26B1 mRNA levels. Silencing of the CYP26B1 gene expression or reduction of CYP26B1 enzymatic activity by using siRNA or the inhibitor R115866, respectively, increased atRA-mediated signaling and resulted in decreased cell proliferation. The CYP26 inhibitor also induced expression of atRA-responsive genes. Therefore, atRA-induced CYP26 expression accelerated atRA inactivation in AOSMCs, giving rise to an atRA-CYP26 feedback loop. Inhibition of this loop with a CYP26 inhibitor increased retinoid signaling. CONCLUSION: The results suggest that CYP26 inhibitors may be a therapeutic alternative to exogenous retinoid administration.


Assuntos
Aorta/citologia , Sistema Enzimático do Citocromo P-450/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Benzotiazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Músculo Liso Vascular/citologia , RNA Interferente Pequeno , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia
16.
Exp Dermatol ; 19(7): 674-81, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20456496

RESUMO

Disorders of keratinization are often treated with vitamin A derivatives (retinoids) which affect keratinocyte differentiation, including keratin (KRT) gene expression. In vivo, suprabasal keratinocytes normally express only keratin (K) 1, K2 and K10, but after topical application of all-trans retinoic acid (ATRA), the granular cells will additionally express K4 and K13, i.e. keratins normally present in oral mucosa and in cultured epidermal keratinocytes. To learn more about the retinoid regulation of keratin expression under in vivo-like conditions, we cultured keratinocytes on de-epidermized dermis in only 0.5% serum. These cells produce a normal-looking epidermis that expresses high mRNA levels of KRT1, KRT2 and KRT10, but minimal amounts of KRT4 and KRT13. Addition of ATRA to the medium for 48 h caused a dose-dependent increase in KRT4/KRT13 and a down-regulation of KRT2 mRNA. An increase in K4 protein was also found. The response was greater than the up-regulation of another retinoid-regulated gene, CRABPII. By studying 10 retinoids with different affinities for the retinoic acid receptors (RAR) and retinoid X receptors (RXR) isoforms, the reciprocal expression of KRT2 and KRT4/KRT13 could be connected with agonists for RARalpha. Two of these agonists, CD336/Am580 and CD2081, altered the expression profile with similar potency as the pan-RAR agonists ATRA and CD367. Co-addition of a pan-RAR antagonist (CD3106/AGN193109) markedly inhibited the induction of KRT4/KRT13 expression, whereas the down-regulation of KRT2 was less affected. In conclusion, RARalpha agonists elicit a reciprocal modulation of KRT2 and KRT4/KRT13 expression in human epidermis, but whether or not the keratin genes also possess RARalpha-specific regulatory elements is still unclear.


Assuntos
Queratinas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Retinoides/metabolismo , Retinoides/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Benzoatos/metabolismo , Benzoatos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Queratina-13/genética , Queratina-13/metabolismo , Queratina-2/genética , Queratina-2/metabolismo , Queratina-4/genética , Queratina-4/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Ácido Retinoico/agonistas , Receptor alfa de Ácido Retinoico , Receptores X de Retinoides/metabolismo , Tetra-Hidronaftalenos/metabolismo , Tetra-Hidronaftalenos/farmacologia , Tretinoína/metabolismo , Tretinoína/farmacologia
17.
Cells ; 9(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517159

RESUMO

Sprouting angiogenesis is the formation of new capillaries from existing vessels in response to tissue hypoxia due to growth/development, repair/healing, and also chronic inflammation. In this study, we aimed to elucidate the effect of IL-6, a pleiotropic cytokine with both pro-inflammatory and anti-inflammatory functions, in regulating the sprouting angiogenic response of endothelial cells (ECs). We found that activation of IL-6 trans-signaling inhibited the migration, proliferation, and tube formation ability of ECs. In addition, inhibition of the autocrine IL-6 classic-signaling by depleting endogenous IL-6 from ECs impaired their tube formation ability. At the molecular level, we found that IL-6 trans-signaling in ECs upregulated established endogenous anti-angiogenic factors such as CXCL10 and SERPINF1 while at the same time downregulated known endogenous pro-angiogenic factors such as cKIT and CXCL8. Furthermore, prior activation of ECs by IL-6 trans-signaling alters their response to vascular endothelial growth factor-A (VEGF-A), causing an increased p38, but decreased Erk1/2 phosphorylation. Collectively, our data demonstrated the dual facets of IL-6 in regulating the sprouting angiogenic function of ECs. In addition, we shed light on molecular mechanisms behind the IL-6 trans-signaling mediated impairment of endothelial sprouting angiogenic response.


Assuntos
Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-6/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Movimento Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Humanos , Neovascularização Fisiológica/genética
18.
Sci Rep ; 10(1): 19108, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154409

RESUMO

The Caspase activation and recruitment domain 8 (CARD8) protein is a component of innate immunity and overexpression of CARD8 mRNA was previously identified in atherosclerosis. However, very little is known about the regulation of CARD8 in endothelial cells and atherosclerosis. The aim of this study was to investigate CARD8 in the regulation of cytokine and chemokine expression in endothelial cells. Sections of human atherosclerotic lesions and non-atherosclerotic arteries were immunostained for CARD8 protein. Expression of CARD8 was correlated to mediators of inflammation in atherosclerotic lesions using Biobank of Karolinska Endarterectomies microarray data. The CARD8 mRNA was knocked-down in human umbilical vein endothelial cells (HUVECs) in vitro, followed by quantitative RT-PCR analysis and OLINK Proteomics. Endothelial and smooth muscle cells in arterial tissue expressed CARD8 and CARD8 correlated with vWF, CD163 and the expression of inflammatory genes, such as CXCL1, CXCL6 and PDGF-A in plaque. Knock-down of CARD8 in HUVECs significantly altered proteins involved in inflammatory response, such as CXCL1, CXCL6, PDGF-A, MCP-1 and IL-6. The present study suggest that CARD8 regulate the expression of cytokines and chemokines in endothelial cells and atherosclerotic lesions, suggesting that CARD8 plays a significant role in endothelial activation.


Assuntos
Aterosclerose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Artérias Carótidas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteínas de Neoplasias/metabolismo , Aterosclerose/cirurgia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/cirurgia , Quimiocinas/metabolismo , Citocinas/metabolismo , Endarterectomia das Carótidas , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/cirurgia
19.
RMD Open ; 6(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31958275

RESUMO

OBJECTIVE: In utero exposure of the fetus to Ro/La autoantibodies may lead to congenital heart block (CHB). In the mother, these autoantibodies are associated with activation of the type I interferon (IFN)-system. As maternal autoantibodies are transferred to the fetus during pregnancy, we investigated whether the type I IFN-system is activated also in newborns of anti-Ro/La positive mothers, and whether fetal IFN activation is affected by maternal immunomodulatory treatment. METHODS: Blood drawn at birth from anti-Ro/La positive mothers, their newborns and healthy control pairs was separated into plasma and peripheral blood mononuclear cells (PBMC). PBMC were analysed directly or cultured. mRNA expression was analysed by microarrays, cell surface markers by flow cytometry, and IFNα levels by immunoassays. RESULTS: We observed increased expression of IFN-regulated genes and elevated plasma IFNα levels not only in anti-Ro/La positive women, but also in their newborns. CD14+ monocytes of both anti-Ro/La positive mothers and their neonates showed increased expression of Sialic acid-binding Ig-like lectin-1, indicating cellular activation. Notably, the IFN score of neonates born to mothers receiving immunomodulatory treatment was similar to that of controls, despite persistent IFN activation in the mothers. In both maternal and neonatal PBMC, IFNα production was induced when cells were cultured with anti-Ro/La positive plasma. CONCLUSIONS: Ro/La autoantibody-exposed neonates at risk of CHB have signs of an activated immune system with an IFN signature. This study further demonstrates that neonatal cells can produce IFNα when exposed to autoantibody-containing plasma, and that maternal immunomodulatory treatment may diminish the expression of IFN-regulated genes in the fetus.


Assuntos
Anticorpos Antinucleares/imunologia , Bloqueio Cardíaco/congênito , Interferon Tipo I/imunologia , Adulto , Autoanticorpos/sangue , Autoanticorpos/imunologia , Estudos de Casos e Controles , Ecocardiografia Doppler , Feminino , Bloqueio Cardíaco/sangue , Bloqueio Cardíaco/embriologia , Bloqueio Cardíaco/imunologia , Humanos , Recém-Nascido , Interferon Tipo I/sangue , Masculino , Troca Materno-Fetal/imunologia , Gravidez , Complicações na Gravidez/imunologia , Doenças Reumáticas/imunologia , Suécia , Transcriptoma , Adulto Jovem
20.
Circulation ; 117(10): 1292-301, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18285570

RESUMO

BACKGROUND: Atherosclerosis is a multifactorial disease in which inflammatory processes play an important role. Inflammation underlies lesion evolution at all stages, from establishment to plaque rupture and thrombosis. Costimulatory molecules of the tumor necrosis factor superfamily such as CD40/CD40L and OX40/OX40L have been implicated in atherosclerosis. METHODS AND RESULTS: This study shows that the tumor necrosis factor superfamily members CD137 and CD137 ligand (CD137L), which play a major role in several autoimmune diseases, may constitute a pathogenic pair in atherogenesis. We detected CD137 protein in human atherosclerotic lesions not only on T cells but also on endothelial cells and showed that CD137 in cultured endothelial cells and smooth muscle cells was induced by proinflammatory cytokines implicated in atherosclerosis. Activation of CD137 by CD137L induced adhesion molecule expression on endothelial cells and reduced smooth muscle cell proliferation. In addition, treatment of atherosclerosis-prone apolipoprotein E-deficient mice with a CD137 agonist caused increased inflammation. T-cell infiltration, mainly of CD8(+) cells, and expression of the murine major histocompatibility complex class II molecule I-A(b) increased significantly in atherosclerotic lesions, as did the aortic expression of proinflammatory cytokines. CONCLUSIONS: Taken together, these observations suggest that CD137-CD137L interactions in the vasculature may contribute to the progression of atherosclerosis via augmented leukocyte recruitment, increased inflammation, and development of a more disease-prone phenotype.


Assuntos
Aterosclerose/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia , Ligante 4-1BB/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/imunologia , Artérias Carótidas/citologia , Artérias Carótidas/fisiologia , Células Cultivadas , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Artéria Renal/citologia , Artéria Renal/fisiologia , Estatísticas não Paramétricas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA