Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Leukoc Biol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189628

RESUMO

The adaptive immune response critically hinges on the functionality of T cell receptors (TCRs), governed by complex molecular mechanisms, including ubiquitination. In this study, we delved into the role of deubiquitinases (DUBs) in T cell immunity, focusing on T cell-B cell conjugate formation and T cell activation. Using a CRISPR-Cas9 screening approach targeting DUB genes in Jurkat T cells, we identified BAP1 as a key positive regulator of T cell-B cell conjugate formation. Subsequent investigations into BAP1 knockout cells revealed impaired T cell activation, evidenced by decreased MAPK and NF-kB signaling pathways and reduced CD69 expression upon TCR stimulation. Flow cytometry and qPCR analyses demonstrated that BAP1 deficiency leads to decreased surface expression of TCR complex components and reduced mRNA levels of the co-stimulatory molecule CD28. Notably, the observed phenotypes associated with BAP1 knockout are specific to T cells and fully dependent on BAP1 catalytic activity. In-depth RNA-seq and mass spectrometry analyses further revealed that BAP1 deficiency induces broad mRNA and protein expression changes. Overall, our findings elucidate the vital role of BAP1 in T cell biology, especially in T cell-B cell conjugate formation and T cell activation, offering new insights and directions for future research in immune regulation.

2.
Blood Cancer J ; 13(1): 23, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737429

RESUMO

Novel drug discoveries have shifted the treatment paradigms of most hematological malignancies, including multiple myeloma (MM). However, this plasma cell malignancy remains incurable, and novel therapies are therefore urgently needed. Whole-genome transcriptome analyses in a large cohort of MM patients demonstrated that alterations in pre-mRNA splicing (AS) are frequent in MM. This manuscript describes approaches to identify disease-specific alterations in MM and proposes RNA-based therapeutic strategies to eradicate such alterations. As a "proof of concept", we examined the causes of aberrant HMMR (Hyaluronan-mediated motility receptor) splicing in MM. We identified clusters of single nucleotide variations (SNVs) in the HMMR transcript where the altered splicing took place. Using bioinformatics tools, we predicted SNVs and splicing factors that potentially contribute to aberrant HMMR splicing. Based on bioinformatic analyses and validation studies, we provided the rationale for RNA-based therapeutic strategies to selectively inhibit altered HMMR splicing in MM. Since splicing is a hallmark of many cancers, strategies described herein for target identification and the design of RNA-based therapeutics that inhibit gene splicing can be applied not only to other genes in MM but also more broadly to other hematological malignancies and solid tumors as well.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Processamento Alternativo , RNA , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA