Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(19): 14228-14243, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690612

RESUMO

The development of chromophores that absorb in the near-infrared (NIR) region beyond 1000 nm underpins numerous applications in medical and energy sciences, yet also presents substantial challenges to molecular design and chemical synthesis. Here, the core bacteriochlorin chromophore of nature's NIR absorbers, bacteriochlorophylls, has been adapted and tailored by annulation in an effort to achieve absorption in the NIR-II region. The resulting bacteriochlorin, Phen2,1-BC, contains two annulated naphthalene groups spanning meso,ß-positions of the bacteriochlorin and the 1,2-positions of the naphthalene. Phen2,1-BC was prepared via a new synthetic route. Phen2,1-BC is an isomer of previously examined Phen-BC, which differs only in attachment via the 1,8-positions of the naphthalene. Despite identical π-systems, the two bacteriochlorins have distinct spectroscopic and photophysical features. Phen-BC has long-wavelength absorption maximum (912 nm), oscillator strength (1.0), and S1 excited-state lifetime (150 ps) much different than Phen2,1-BC (1292 nm, 0.23, and 0.4 ps, respectively). These two molecules and an analogue with intermediate characteristics bearing annulated phenyl rings have unexpected properties relative to those of non-annulated counterparts. Understanding the distinctions requires extending concepts beyond the four-orbital-model description of tetrapyrrole spectroscopic features. In particular, a reduction in symmetry resulting from annulation results in electronic mixing of x- and y-polarized transitions/states, as well as vibronic coupling that together reduce oscillator strength of the long-wavelength absorption manifold and shorten the S1 excited-state lifetime. Collectively, the results suggest a heuristic for the molecular design of tetrapyrrole chromophores for deep penetration into the relatively unutilized NIR-II region.


Assuntos
Porfirinas , Espectroscopia de Luz Próxima ao Infravermelho , Porfirinas/química , Naftalenos/química , Estrutura Molecular , Bacterioclorofilas/química
2.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557815

RESUMO

A targeted strategy for treating cancer is antibody-directed enzyme prodrug therapy, where the enzyme attached to the antibody causes conversion of an inactive small-molecule prodrug into an active drug. A limitation may be the diffusion of the active drug away from the antibody target site. A related strategy with radiotherapeutics entails enzymatically promoted conversion of a soluble to insoluble radiotherapeutic agent, thereby immobilizing the latter at the target site. Such a molecular brachytherapy has been scarcely investigated. In distinct research, the advent of molecular designs for aggregation-induced emission (AIE) suggests translational use in molecular brachytherapy. Here, several 2-(2-hydroxyphenyl)benzothiazole substrates that readily aggregate in aqueous solution (and afford AIE) were elaborated in this regard. In particular, (1) the 2-(2-hydroxyphenyl) unit was derivatized to bear a pegylated phosphodiester that imparts water solubility yet undergoes enzymatic cleavage, and (2) a p-phenol unit was attached to the benzo moiety to provide a reactive site for final-step iodination (here examined with natural abundance iodide). The pegylated phosphodiester-iodinated benzothiazole undergoes conversion from aqueous-soluble to aqueous-insoluble upon treatment with a phosphatase or phosphodiesterase. The aggregation is essential to molecular brachytherapy, whereas the induced emission of AIE is not essential but provides a convenient basis for research development. Altogether, 21 compounds were synthesized (18 new, 3 known via new routes). Taken together, blending biomedical strategies of enzyme prodrug therapy with materials chemistry concerning substances that undergo AIE may comprise a step forward on the long road toward molecular brachytherapy.


Assuntos
Braquiterapia , Pró-Fármacos , Benzotiazóis , Polietilenoglicóis
3.
ChemMedChem ; 17(16): e202200286, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704751

RESUMO

Multidrug resistant (MDR) bacteria are an increasing public health problem. One promising alternative to the development of new antibiotics is the use of antibiotic adjuvants, which would allow the continued use of FDA-approved antibiotics that have been rendered ineffective due to resistance. Herein, we report a series of dipyrrins and pyrrole derivatives designed as analogues of prodigiosin and obatoclax, several of which potentiate the activity of colistin against Klebsiella pneumoniae, with lead compounds also potentiating colistin against Acinetobacter baumannii and Pseudomonas aeruginosa.


Assuntos
Acinetobacter baumannii , Colistina , Adjuvantes Farmacêuticos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Prodigiosina/farmacologia , Pseudomonas aeruginosa
4.
Theranostics ; 10(1): 62-73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903106

RESUMO

Rationale: Nanoparticles (NPs) that are rapidly eliminated from the body offer great potential in clinical test. Renal excretion of small particles is preferable over other clearance pathways to minimize potential toxicity. Thus, there is a significant demand to prepare ultra-small theranostic agents with renal clearance behaviors. Method: In this work, we report a facile method to prepare NPs with ultra-small size that show renal clearable behavior for imaging-guided photodynamic therapy (PDT). Pyropheophorbide-a (Pa), a deep red photosensitizer was functionalized with polyethylene glycol (PEG) to obtain Pa-PEG. The prepared NPs formed ultra-small nanodots in aqueous solution and showed red-shifted absorbance that enabling efficient singlet oxygen generation upon light irradiation. Results: In vitro studies revealed good photodynamic therapy (PDT) effect of these Pa-PEG nanodots. Most of the cancer cells incubated with Pa-PEG nanodots were destroyed after being exposed to the irradiated light. Utilizing the optical properties of such Pa-PEG nanodots, in vivo photoacoustic (PA) and fluorescence (FL) imaging techniques were used to assess the optimal time for PDT treatment after intravenous (i.v.) injection of the nanodots. As monitored by the PA/FL dual-modal imaging, the nanodots could accumulate at the tumor site and reach the maximum concentration at 8 h post injection. Finally, the tumors on mice treated with Pa-PEG nanodots were effectively inhibited by PDT treatment. Moreover, Pa-PEG nanodots showed high PA/FL signals in kidneys implying these ultra-small nanodots could be excreted out of the body via renal clearance. Conclusion: We demonstrated the excellent properties of Pa-PEG nanodots that can be an in vivo imaging-guided PDT agent with renal clearable behavior for potential future clinical translation.


Assuntos
Neoplasias da Mama/terapia , Sobrevivência Celular/efeitos dos fármacos , Clorofila/análogos & derivados , Nanopartículas , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Clorofila/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Técnicas Fotoacústicas , Nanomedicina Teranóstica
5.
Sci Rep ; 10(1): 1283, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992821

RESUMO

We developed a pH dependent amino heptamethine cyanine based theranostic probe (I2-IR783-Mpip) that can be activated by near infrared light. I2-IR783-Mpip, in acidic condition, exhibited an intense, broad NIR absorption band (820-950 nm) with high singlet oxygen generation upon exposure to NIR light (~850 nm). Theoretical calculations showed that the protonation of the probe in an acidic environment decreased the molecular orbital energy gaps and increased the intramolecular charge transfer efficiency. I2-IR783-Mpip exhibited good photodynamic efficiency towards liver hepatocellular carcinoma cells under physiological and slightly acidic conditions while normal human embryonic kidney cells remained alive under the same conditions. Detection of intracellular reactive oxygen species (ROS) in cells treated with I2-IR783-Mpip after NIR light exposure confirmed PDT efficiency of the probe in acidic environment. Moreover, I2-IR783-Mpip also demonstrated efficient phototoxicity under deep-seated tumour cell system. We believed this is the first PDT agent that possesses intrinsic tumour binding and selectively eradicate tumour in acidic environment under 850 nm NIR lamp.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Corantes Fluorescentes , Raios Infravermelhos , Neoplasias Hepáticas/tratamento farmacológico , Modelos Químicos , Fotoquimioterapia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA