Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 49(7): 1151-1161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38418568

RESUMO

The central nucleus of the amygdala is known to play key roles in alcohol use and affect. Neurotensin neurons in the central nucleus of the amygdala have been shown to regulate alcohol drinking in male mice. However, little is known about which neurotransmitters released by these cells drive alcohol consumption or whether these cells drive alcohol consumption in female mice. Here we show that knockdown of GABA release from central amygdala neurotensin neurons using a Nts-cre-dependent vGAT-shRNA-based AAV strategy reduces alcohol drinking in male, but not female, mice. This manipulation did not impact avoidance behavior, except in a fasted novelty-suppressed feeding test, in which vGAT shRNA mice demonstrated increased latency to feed on a familiar high-value food reward, an effect driven by male mice. In contrast, vGAT shRNA female mice showed heightened sensitivity to thermal stimulation. These data show a role for GABA release from central amygdala neurotensin neurons in modulating consumption of rewarding substances in different motivational states.


Assuntos
Consumo de Bebidas Alcoólicas , Núcleo Central da Amígdala , Neurônios , Neurotensina , Ácido gama-Aminobutírico , Animais , Feminino , Masculino , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/efeitos dos fármacos , Neurotensina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Etanol/administração & dosagem , Etanol/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
2.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-37745547

RESUMO

The central nucleus of the amygdala is known to play key roles in alcohol use and affect. Neurotensin neurons in the central nucleus of the amygdala have been shown to regulate alcohol drinking in male mice. However, little is known about which neurotransmitters released by these cells drive alcohol consumption or whether these cells drive alcohol consumption in female mice. Here we show that knockdown of GABA release from central amygdala neurotensin neurons using a Nts-cre-dependent vGAT-shRNA-based AAV strategy reduces alcohol drinking in male, but not female, mice. This manipulation did not impact avoidance behavior, except in a fasted novelty-suppressed feeding test, in which vGAT shRNA mice demonstrated increased latency to feed on a familiar high-value food reward, an effect driven by male mice. In contrast, vGAT shRNA female mice showed heightened sensitivity to thermal stimulation. These data show a role for GABA release from central amygdala neurotensin neurons in modulating consumption of rewarding substances in different motivational states.

3.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280288

RESUMO

Nucleus basalis magnocellularis (NBM) cholinergic projections to the basolateral amygdala (BLA) regulate the acquisition and consolidation of fear-like and anxiety-like behaviors. However, it is unclear whether the alterations in the NBM-BLA circuit promote negative affect during ethanol withdrawal (WD). Therefore, we performed ex vivo whole-cell patch-clamp electrophysiology in both the NBM and the BLA of male Sprague Dawley rats following 10 d of chronic intermittent ethanol (CIE) exposure and 24 h of WD. We found that CIE exposure and withdrawal enhanced the neuronal excitability of NBM putative "cholinergic" neurons. We subsequently used optogenetics to directly manipulate NBM terminal activity within the BLA and measure cholinergic modulation of glutamatergic afferents and BLA pyramidal neurons. Our findings indicate that CIE and withdrawal upregulate NBM cholinergic facilitation of glutamate release via activation of presynaptic nicotinic acetylcholine receptors (AChRs). Ethanol withdrawal-induced increases in NBM terminal activity also enhance BLA pyramidal neuron firing. Collectively, our results provide a novel characterization of the NBM-BLA circuit and suggest that CIE-dependent modifications to NBM afferents enhance BLA pyramidal neuron activity during ethanol withdrawal.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Síndrome de Abstinência a Substâncias , Animais , Ratos , Masculino , Etanol/farmacologia , Ratos Sprague-Dawley , Tonsila do Cerebelo/fisiologia , Núcleo Basal de Meynert
4.
Neuroscience ; 455: 165-176, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33385490

RESUMO

Chronic intermittent ethanol (CIE) exposure dysregulates glutamatergic and GABAergic neurotransmission, facilitating basolateral amygdala (BLA) pyramidal neuron hyperexcitability and the expression of anxiety during withdrawal. It is unknown whether ethanol-induced alterations in nucleus basalis magnocellularis (NBM) cholinergic projections to the BLA mediate anxiety-related behaviors through direct modulation of GABA and glutamate afferents. Following 10 days of CIE exposure and 24 h of withdrawal, we recorded GABAergic and glutamatergic synaptic responses in BLA pyramidal neurons with electrophysiology, assessed total protein expression of cholinergic markers, and quantified acetylcholine and choline concentrations using a colorimetric assay. We measured α7 nicotinic acetylcholine receptor (nAChR) dependent modulation of presynaptic function at distinct inputs in AIR- and CIE-exposed BLA coronal slices as a functional read-out of cholinergic neurotransmission. CIE/withdrawal upregulates the endogenous activity of α7 nAChRs, facilitating release at both GABAergic' local' interneuron and glutamatergic synaptic responses to stria terminalis (ST) stimulation, with no effect at GABAergic lateral paracapsular cells (LPCs). CIE caused a three-fold increase in BLA acetylcholine concentration, with no changes in α7 nAChR or cholinergic marker expression. These data illustrate that α7 nAChR-dependent changes in presynaptic function serve as a proxy for CIE-dependent alterations in synaptic acetylcholine levels. Thus, cholinergic projections appear to mediate CIE-induced alterations at GABA/glutamate inputs.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Etanol , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiopatologia , Animais , Colinérgicos/farmacologia , Etanol/farmacologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Ratos , Ratos Sprague-Dawley , Sinapses , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA