Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731636

RESUMO

Plant in vitro cultures can be an effective tool in obtaining desired specialized metabolites. The purpose of this study was to evaluate the effect of light-emitting diodes (LEDs) on phenolic compounds in Rhaponticum carthamoides shoots cultured in vitro. R. carthamoides is an endemic and medicinal plant at risk of extinction due to the massive harvesting of its roots and rhizomes from the natural environment. The shoots were cultured on an agar-solidified and liquid-agitated Murashige and Skoog's medium supplemented with 0.1 mg/L of indole-3-acetic acid (IAA) and 0.5 mg/L of 6-benzyladenine (BA). The effect of the medium and different treatments of LED lights (blue (BL), red (RL), white (WL), and a combination of red and blue (R:BL; 7:3)) on R. carthamoides shoot growth and its biosynthetic potential was observed. Medium type and the duration of LED light exposure did not affect the proliferation rate of shoots, but they altered the shoot morphology and specialized metabolite accumulation. The liquid medium and BL light were the most beneficial for the caffeoylquinic acid derivatives (CQAs) production, shoot growth, and biomass increment. The liquid medium and BL light enhanced the content of the sum of all identified CQAs (6 mg/g DW) about three-fold compared to WL light and control, fluorescent lamps. HPLC-UV analysis confirmed that chlorogenic acid (5-CQA) was the primary compound in shoot extracts regardless of the type of culture and the light conditions (1.19-3.25 mg/g DW), with the highest level under R:BL light. BL and RL lights were equally effective. The abundant component was also 3,5-di-O-caffeoylquinic acid, accompanied by 4,5-di-O-caffeoylquinic acid, a tentatively identified dicaffeoylquinic acid derivative, and a tricaffeoylquinic acid derivative 2, the contents of which depended on the LED light conditions.


Assuntos
Flavonoides , Luz , Brotos de Planta , Ácido Quínico , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/química , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Ácido Quínico/química , Flavonoides/metabolismo , Flavonoides/química , Ácidos Indolacéticos/metabolismo
2.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175164

RESUMO

The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.


Assuntos
Dipsacaceae , Óleos Voláteis , Medicina Tradicional , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Etnofarmacologia , Fitoterapia
3.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430325

RESUMO

Rhaponticum carthamoides (Willd.) Iljin is a rare, pharmacopoeial, and medicinal plant, endemic to Siberia and endangered due to the massive collection of raw material from the natural habitat. The aim of the current study was to estimate the effect of sucrose concentration (0-7%) on R. carthamoides transformed root growth and on caffeoylquinic acid derivative (CQA) and flavonoid production. Sucrose in higher concentrations may induce osmotic stress and thus may affect secondary metabolism in plants. It was revealed that sucrose concentration influenced R. carthamoides transformed root biomass and modified the phenolic compound metabolic pathway. However, the dynamics of both processes varied significantly. The optimal sucrose level was different for biomass accumulation and the biosynthesis of specialized metabolite. The highest dry weight of roots was achieved for 7% sucrose (31.17 g L-1 of dry weight), while 1% sucrose was found to be optimal for phenolic acid and flavonoid production. Considering the dry weight increase and metabolite accumulation, 3% sucrose was revealed to give optimal yields of CQAs (511.1 mg L-1) and flavonoids (38.9 mg L-1). Chlorogenic acid, 3,5-, 4,5-di-O-caffeoylquinic acids, 1,4,5-O-tricaffeoylquinic acid, and a tentatively-identified tricaffeoylquinic acid derivative 1 were found to be the most abundant specialized metabolites among the identified CQAs. Our findings indicate that R. carthamoides transformed roots may be an efficient source of CQA derivatives, with valuable health-promoting activities.


Assuntos
Leuzea , Biomassa , Sacarose , Flavonoides , Peso Corporal
4.
Neurochem Res ; 43(7): 1363-1370, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29786770

RESUMO

The aim of this study was to determine the anticancer potential of Leonurus sibiricus extract derived from in vitro transgenic roots transformed by Agrobacetrium rhizogenes with AtPAP1 transcriptional factor, and that of transformed roots without construct, on grade IV human glioma cells and the U87MG cell line, and attempt to characterize the mechanism involved in this process. The anticancer effect induced by the tested extracts was associated with DNA damage, PARP cleavage/increased H2A.X histone levels and UHRF-1/DNMT1 down-regulation of mRNA levels. Additionally, we demonstrated differences in the content of compounds in the tested extracts by HPLC analysis with ATPAP1 construct and without. Both the tested extracts showed anticancer properties and the better results were observed for AtPAP1 with transcriptional factor root extract; this effect could be ascribed to the presence of higher condensed phenolic acids such as neochlorogenic acid, chlorogenic acids, ferulic acid, caffeic acid and p-coumaric acid. Further studies with AtPAP1 (with the transcriptional factor from Arabidopisi thaliana) root extract which showed better activities in combination with anticancer drugs are needed.


Assuntos
Proteínas de Arabidopsis/toxicidade , Dano ao DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Leonurus , Extratos Vegetais/toxicidade , Raízes de Plantas , Fatores de Transcrição/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas de Arabidopsis/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Epigênese Genética/fisiologia , Humanos , Extratos Vegetais/isolamento & purificação , Fatores de Transcrição/isolamento & purificação
5.
Mol Cell Biochem ; 445(1-2): 89-97, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29238899

RESUMO

The present study is the first investigation of the inhibitory effect of Rhaponticum carthamoides transformed roots (TR) extract on the proliferation of grade II and III human glioma cells. TR extract showed the cytotoxic effect and inhibited the colony formation of both glioma cell lines in dose-dependent manner. The root extract induced apoptosis by increasing of the reactive oxygen species (about threefold compared to the control cells) leading to a disruption of mitochondrial membrane potential. Additionally, the mRNA levels of the apoptotic factors such as Bax, Tp53, caspase-3, and caspase-9 were observed to increase. These results indicate that the TR extract possesses anticancer activity by inhibiting glioma cell proliferation and inducing apoptotic cell death, and may be used as a promising anticancer agent.


Assuntos
Neoplasias Encefálicas/patologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Glioma/patologia , Leuzea/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Caspase 3/genética , Caspase 9/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Glioma/enzimologia , Glioma/metabolismo , Humanos , Leuzea/crescimento & desenvolvimento , Leuzea/metabolismo , Pessoa de Meia-Idade , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína X Associada a bcl-2/genética
6.
Molecules ; 23(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115821

RESUMO

As the current cancer treatment success rate is not sufficient, interest has grown in plants as possible sources of anti-cancer compounds. One such plant with a broad spectrum of activity is Lenourus sibiricus of the family Lamiaceae. This study investigates for the first time both the genotoxic and cytotoxic activities of TR (transformed) and AtPAP1 TR (with over-expression of transcriptional factor) root extracts of Lenourus sibiricus against various cancer cell lines (CCRF-CEM, K-562 and A549). Both tested extracts showed a cytotoxic effect on CCRF-CEM and K-562 cell lines, but strongest activity was observed for the AtPAP1 TR extract. No cytotoxic effect was observed against the A549 cell line in the tested concentration range, and it was found that both tested extracts may induce apoptosis by decreasing mitochondrial membrane potential and inducing nDNA damage lesion in the TP53 region and mtDNA in ND1 (mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1) and ND5 (mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 5) regions in K-562 and CCRF-CEM. Our results confirmed that TR and AtPAP1 TR root extracts from L. sibiricus are cytotoxic and genotoxic against different model cell lines (CCRF-CEM and K-562). However, the observed genotoxicity of both extracts needs to be confirmed by additional studies. These preclinical observations support the use of L. sibiricus with other pharmacological purposes.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Arabidopsis/metabolismo , Leonurus/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Fatores de Transcrição/metabolismo , Células A549 , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Humanos , Hidroxibenzoatos/análise , Hidroxibenzoatos/isolamento & purificação , Células K562 , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Fatores de Transcrição/genética
7.
Tumour Biol ; 37(7): 8753-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26743778

RESUMO

Leonurus sibiricus L. is a traditional medicinal plant which occurs in southern Siberia, China, Korea, Japan, and Vietnam. The plant shows several pharmacological effects, but the most interesting is its anti-cancer activity. The aim of our study was to examine the induction of apoptosis in malignant glioma cells, the most aggressive primary brain tumors of the central nervous system, following treatment with transformed root (TR) or non-transformed root (NR) L. sibiricus extracts. Both the NR and TR extracts were found to have cytotoxic activity in the glioma primary cells. The human glioblastoma cell lines obtained from patients were confirmed to be tumorogenic by the following three markers: D10S1709, D10S1172, and D22S283. HPLC and MS analysis revealed the presence of polyphenolic compounds (chlorogenic acid, ferulic acid, caffeic acid, p-coumaric acid, ellagic acid, and verbascoside) in both sets of root extracts. In summary, our findings demonstrate that treatment of the glioma cells with NR and TR extracts resulted (a) in significant cell growth inhibition, (b) S- and G2/M-phase cell cycle arrest, and (c) apoptosis in a dose-dependent fashion by changing Bax/Bcl-2 ratio (about 4-fold increase) and p53 (5-fold increase) activation. These findings indicate that NR and TR extracts exhibit anti-cancer activity through the regulation of genes involved in apoptosis. This is the first report to demonstrate the cytotoxic effect of polyphenolic extracts from L. sibiricus roots against glioma cells, but further studies are required to understand the complete mechanism of its apoptosic activity.


Assuntos
Apoptose/efeitos dos fármacos , Glioma/tratamento farmacológico , Leonurus/química , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Carcinogênese/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioma/metabolismo , Humanos , Pessoa de Meia-Idade , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Polifenóis/química , Polifenóis/farmacologia
8.
Curr Pharm Des ; 26(24): 2876-2884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32250214

RESUMO

Inflammation plays a major role in chronic airway diseases like asthma, COPD, and cystic fibrosis. Inflammation plays a crucial role in the worsening of the lung function resulting in worsening symptoms. The inflammatory process is very complexed, therefore the strategies for developing an effective treatment for inflammatory airway diseases would benefit from the use of natural substances. Plant products have demonstrated anti-inflammatory properties on various lung disease models and numerous natural plant agents have successfully been used to treat inflammation. Naturally occurring substances may exert some anti-inflammatory effects by modulating some of the inflammatory pathways. These agents have been used in different cultures for thousands of years and have proven to be relatively safe. Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-kB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. This review provides an overview of the anti-inflammatory effects of some of the natural agents and illustrates their great potential as sources of drugs to cover an extensive range of pharmacological effects.


Assuntos
Anti-Inflamatórios , Asma , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Pulmão , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
9.
Inflammation ; 43(3): 1173, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048106

RESUMO

The original version of this article contained mistakes concerning the affiliations of Ewa Skala and Tomasz Kowalczyk. Their correct affiliations are now presented on this proof.

10.
Curr Pharm Des ; 26(24): 2817-2842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32048962

RESUMO

BACKGROUND: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer's disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. METHODS: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. RESULTS: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. CONCLUSION: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


Assuntos
Produtos Biológicos , Echinacea , Agrobacterium , Humanos , Raízes de Plantas
11.
Plants (Basel) ; 9(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973076

RESUMO

The plant kingdom abounds in countless species with potential medical uses. Many of them contain valuable secondary metabolites belonging to different classes and demonstrating anticancer, anti-inflammatory, antioxidant, antimicrobial or antidiabetic properties. Many of these metabolites, e.g., paclitaxel, vinblastine, betulinic acid, chlorogenic acid or ferrulic acid, have potential applications in medicine. Additionally, these compounds have many therapeutic and health-promoting properties. The growing demand for these plant secondary metabolites forces the use of new green biotechnology tools to create new, more productive in vitro transgenic plant cultures. These procedures have yielded many promising results, and transgenic cultures have been found to be safe, efficient and cost-effective sources of valuable secondary metabolites for medicine and industry. This review focuses on the use of various in vitro plant culture systems for the production of secondary metabolites.

12.
Biomolecules ; 10(4)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230928

RESUMO

Many biologically-active plant-derived compounds have therapeutic or chemopreventive effects. The use of plant in vitro cultures in conjunction with modern genetic engineering techniques allows greater amounts of valuable secondary metabolites to be obtained without interfering with the natural environment. This work presents the first findings concerning the acquisition of transgenic hairy roots of Senna obtusifolia overexpressing the gene encoding squalene synthase 1 from Panax ginseng (PgSS1) (SOPSS hairy loot lines) involved in terpenoid biosynthesis. Our results confirm that one of PgSS1-overexpressing hairy root line extracts (SOPSS2) possess a high cytotoxic effect against a human acute lymphoblastic leukemia (NALM6) cell line. Further analysis of the cell cycle, the expression of apoptosis-related genes (TP53, PUMA, NOXA, BAX) and the observed decrease in mitochondrial membrane potential also confirmed that the SOPSS2 hairy root extract displays the highest effects; similar results were also obtained for this extract combined with doxorubicin. The high cytotoxic activity, observed both alone or in combination with doxorubicin, may be due to the higher content of betulinic acid as determined by HPLC analysis. Our results suggest synergistic effects of tested extract (betulinic acid in greater amount) with doxorubicin which may be used in the future to develop new effective strategies of cancer chemosensitization.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Farnesil-Difosfato Farnesiltransferase/genética , Panax/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Extrato de Senna/farmacologia , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Humanos , Leucemia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Extrato de Senna/química , Senna/genética , Ácido Betulínico
13.
Curr Pharm Des ; 26(24): 2859-2875, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32303169

RESUMO

Skin ailments present a major health burden in both developed and undeveloped countries. Maintaining healthy skin is important for a healthy body. Medicinal plants have long provided reliable therapy in the treatment of skin diseases in humans through a diverse range of bioactive molecules. Skin diseases may have a various basis, or may be genetically determined; together, they constitute approximately 34% of all occupational diseases encountered in people of all ages. Of these, melanoma is one of the most dangerous forms, with very poor prognosis for patients if it is diagnosed too late. This review of the literature over the past five years examines the role and utilities of plant extracts in treating various skin diseases such as atopic dermatitis, acne or melanoma with various potential mechanisms of action.


Assuntos
Dermatite Atópica , Plantas Medicinais , Dermatopatias , Humanos , Extratos Vegetais/farmacologia , Pele , Dermatopatias/tratamento farmacológico
14.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560101

RESUMO

Plectranthus spp. is widely known for its medicinal properties and bioactive metabolites.The cytotoxic and genotoxic properties of the four known abietane diterpenoids: 7α-Acetoxy-6ß-hydroxyroyleanone (Roy), 6,7-dehydroroyleanone (Deroy), 7ß,6ß-dihydroxyroyleanone6 (Diroy),and Parvifloron D (Parv), isolated from P. madagascariensis (Roy, DeRoy, and Diroy) and P. ecklonii(Parv) were evaluated. The tested compounds showed cytotoxic effects against the human leukemiacell line CCRF-CEM and the lung adenocarcinoma cell line A549. All tested compounds inducedapoptosis by altering the level of pro- and anti-apoptotic genes. The results show that from the testedditerpenoids, Roy and Parv demonstrated the strongest activity in both human cancer cell lines,changing the permeability mitochondrial membrane potential and reactive oxygen species (ROS)levels, and possibly inducing mtDNA or nDNA damage. In conclusion, the abietane diterpenoidstested may be used in the future as potential natural chemotherapeutic agents.

15.
Biomolecules ; 10(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012853

RESUMO

Natural compounds isolated from plants are excellent starting points in drug design and have been widely studied as anticancer agents; they hence find use in a considerable proportion of anticancer drugs. The genus Plectranthus (Lamiaceae) comprises a large and widespread group of species with various applications in traditional medicine. Therefore, the aim of the present study was to determine the effectiveness of treatment with four abietane diterpenoids isolated from P.madagascariensis and P.ecklonii, 6,7-dehydroroyleanone, 7ß,6ß-dihydroxyroyleanone, 7α-acetoxy-6ß-hydroxyroyleanone and parvifloron D, in initiating apoptosis in a glioma cell line. The pure compounds were found to exhibit anticancer effects in primary H7PX glioma cells line by inducing apoptosis G2/M cell cycle arrest and double-strand breaks, indicated by increased levels of phosphorylated H2A.X and decreasing mitochondrial membrane potential; they also influenced the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, or Cas-3). Our findings indicate that these compounds may offer potential as beneficial antitumor drugs but further in vivo studies are needed.


Assuntos
Abietanos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Plectranthus/química , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Desenho de Fármacos , Citometria de Fluxo , Glioma/tratamento farmacológico , Histonas/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Necrose , Fosforilação
16.
Inflammation ; 42(6): 2205-2214, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31612365

RESUMO

Various experimental models strongly support the hypothesis that airway inflammation can be caused by oxidative stress. Inflammatory airway diseases like asthma and COPD are characterized by higher levels of ROS and inflammatory cytokines. One of the sources of ROS is NADPH oxidase. Therefore, the aim of the study was to investigate influence of NADPH oxidase inhibition on the expression of IL-6, IL-8, TNF, TSLP, CD59, and PPAR-γ in vitro. A549 cells were incubated with apocynin in three concentrations (0.5 mg/ml, 1 mg/ml, and 3 mg/ml). Cells were trypsinized and RNA isolated after 1 h, 2 h, and 4 h of apocynin incubation at each concentration. Afterwards, reverse transcription was performed to evaluate mRNA expression using real-time PCR. The time-response and dose-response study showed that apocynin significantly influenced the relative expression of chosen genes (IL-6, IL-8, TNF, PPAR-γ, TSLP, and CD59). Apocynin decreased the mRNA expression of TNF-α at all concentrations used, and of IL-6 at concentrations of 1 and 3 mg/ml (p < 0.05). TSLP mRNA expression was also reduced by apocynin after 1 h and 2 h, and CD59 mRNA after 1 h, but only at the highest concentration. The expression of PPAR-γ was reduced after apocynin in the highest concentrations only (p < 0.05). The results might suggest that proinflammatory agents' expression levels are strongly connected to the presence of oxidative stress generated by NADPH oxidase and this might be at least partially eliminated by anti-oxidative action. Apocynin, as an effective inhibitor of NADPH oxidase, seems to be useful in potential anti-oxidative and anti-inflammatory therapy.


Assuntos
Acetofenonas/farmacologia , Citocinas/metabolismo , Inflamação/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Células A549 , Humanos , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos
17.
J Biotechnol ; 306: 125-133, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31574263

RESUMO

Dracocephalum forrestii is a perennial, endemic to China plant with a number of pharmaceutical properties. Transformed shoots of the species spontaneously regenerated from hairy roots induced by Agrobacterium rhizogenes. The transgenic nature of the shoots was confirmed by polymerase chain reaction (PCR). The shoot culture was multiplied on Murashige and Skoog (MS) medium with 0.2 mg/l IAA and 0.2, 0.5, 1.0, 2.0 or 5.0 mg/l purine-type cytokinins (mT, BAR, BPA or BAP). The highest multiplication rate (about thirteen shoot or buds per explant) was obtained on MS medium with 0.2 mg/l mT after four weeks of culture. The phenolic compounds present in the hydromethanolic extracts from the D. forrestii transgenic shoots were characterized using UPLC-PDA-ESI-MS. The shoots were found to biosynthesize three phenolic acids and five flavonoid glycosides. UHPLC analysis of the hydromethanolic extracts found the predominant phenolic acid to be rosmarinic acid, with its highest content observed in shoots cultivated with 5.0 mg/l BPA. In contrast, the greatest production of flavonoid derivatives (especially acacetin derivatives) was observed in the medium supplemented with 2 mg/l BPA.


Assuntos
Citocininas/farmacologia , Lamiaceae/efeitos dos fármacos , Lamiaceae/genética , Fenóis/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Agrobacterium/genética , Cinamatos/metabolismo , Meios de Cultura , Citocininas/química , DNA Bacteriano/genética , Depsídeos/metabolismo , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/metabolismo , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Transformação Genética , Ácido Rosmarínico
18.
Oxid Med Cell Longev ; 2019: 9165784, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737178

RESUMO

Menyanthes trifoliata L. is a valuable medical plant found in Europe, North America, and Asia, which grows on peat bogs and swamps. It has long been used in folk medicine as a remedy for various ailments. This is the first report to demonstrate the protective antioxidant and anti-inflammatory properties of aqueous methanolic extracts derived from the aerial parts (MtAPV) and roots (MtRV) of in vitro grown plants on human umbilical vein endothelial cells (HUVECs). It describes the influence of the tested extracts on the expression of antioxidant (HO-1, NQO1, NRF2, kEAP1, and GCLC) and inflammation-related genes (IL-1α, IL-1ß, IL-6, TNF-α, and IFN-γ) in cells stimulated with H2O2 or LPS, respectively. In addition, M. trifoliata extracts were found to moderately affect the growth of certain bacterial and fungal pathogens, with the strongest antibacterial effect found against Pseudomonas aeruginosa and Enterococcus faecalis. M. trifoliata extracts demonstrated protective effects against mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage caused by ROS, decreasing the numbers of mtDNA lesions in the ND1 and ND2 genes and nDNA damage in the TP53 and HPRT1 genes and reducing cleavage in PARP1- and γ-H2A.X-positive cells. The root extract of in vitro M. trifoliata (MtRV) appears to have better anti-inflammatory, antioxidant, antimicrobial, and protective properties than the extract from the aerial part (MtAPV). These differences in biological properties may result from the higher content of selected phenolic compounds and betulinic acid in the MtRV than in the MtAPV extract.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , DNA Mitocondrial/fisiologia , Endotélio Vascular/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Inibidores do Crescimento/farmacologia , Magnoliaceae/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/fisiologia , Citocinas/metabolismo , Endotélio Vascular/patologia , Enterococcus faecalis/efeitos dos fármacos , Inibidores do Crescimento/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Oxirredução , Extratos Vegetais/química , Raízes de Plantas , Pseudomonas aeruginosa/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
19.
Cytotechnology ; 71(1): 165-180, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30610508

RESUMO

Menyanthes trifoliata L. has been used in traditional medicine for centuries. It exists in Asia, Europe, North America and in Morocco and is exploited as a remedy for anemia and lack of appetite. This plant shows many pharmacological properties, but its most interesting one is its anti-cancer potential. The present study examines the induction of apoptosis in grade IV glioma cells after treatment with the extracts from aerial part and root of M. trifoliata plants derived from in vitro (MtAPV and MtRV, respectively) and from soil (MtAPS and MtRS, respectively) and presents the first comparison of the biological effects of four different extracts of M. trifoliata against glioblastoma cells. The root extracts of M. trifoliata plants were found to exhibit cytotoxic effects against grade IV glioma cells, but not normal human astrocytes. HPLC analysis demonstrated the presence of various polyphenolic compounds, including sinapinic acid, ferulic acid, syringic acid and vanilic acid. Higher amount of pentacyclic triterpene (betulinic acid) was also found in MtRV extract. The growth inhibition of human grade IV glioma cells mediated by MtRV extract appears to be associated with apoptosis and G2/M phase cell cycle arrest, and altered expression of the pro- and anti-apoptotic genes (Bax, Bcl-2, Cas-3 and TP53) and proteins (Bax, Bcl-2, Cas-3 and p53), as well as decreased mitochondrial membrane potential. Our results indicate that M. trifoliata gives promising results as an anti-cancer agent for human glioblastoma cell lines. However, further research is necessary in view of its therapeutic use.

20.
Cytotechnology ; 70(6): 1585-1594, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30171426

RESUMO

Rhaponticum carthamoides transformed root extract induces double strand DNA damage by increasing the number of phosphorylated H2A.X- and cleaved PARP1-positive U87MG cells and patient-derived IV grade glioma cells. Furthermore, treatment of these cells with root extract causes down-regulation of UHRF1 and DNMT1. Transformed root extract is rich in caffeoylquinic acid derivatives, especially tricaffeoylquinic acid derivatives. Our findings demonstrate that the R. carthamoides transformed root extract may trigger apoptosis in glioma cells by induction of DNA damage, PARP cleavage and epigenetic modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA