Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014992

RESUMO

Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.

2.
Food Microbiol ; 111: 104190, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681396

RESUMO

Temperature is a major determinant of Listeria (L.) monocytogenes adherence and biofilm formation on abiotic surfaces. However, its role on gene regulation of L. monocytogenes mature biofilms has not been investigated. In the present study, we aimed to evaluate the impact of temperature up- and down-shift on L. monocytogenes biofilms gene transcription. L. monocytogenes strain EGD-e biofilms were first developed on stainless steel surfaces in Brain Heart Infusion broth at 20 °C for 48 h. Then, nutrient broth was renewed, and mature biofilms were exposed to 10 °C, 20 °C or 37 °C for 24 h. Biofilm cells were harvested and RNA levels of plcA, prfA, hly, mpl, plcB, sigB, bapL, fbpA, fbpB, lmo2178, lmo0880, lmo0160, lmo1115, lmo 2089, lmo2576, lmo0159 and lmo0627 were evaluated by quantitative RT-PCR. The results revealed an over-expression of all genes tested in biofilm cells compared to planktonic cells. When biofilms were further allowed to proliferate at 20 °C for 24 h, the transcription levels of key virulence, stress response and putative binding proteins genes plcA, sigB, fbpA, fbpB, lmo1115, lmo0880 and lmo2089 decreased. A temperature-dependent transcription for sigB, plcA, hly, and lmo2089 genes was observed after biofilm proliferation at 10 °C or 37 °C. Our findings suggest that temperature differentially affects gene regulation of L. monocytogenes mature biofilms, thus modulating attributes such as virulence, stress response and pathogenesis.


Assuntos
Listeria monocytogenes , Listeria , Listeria monocytogenes/fisiologia , Virulência/genética , Temperatura , Biofilmes , Listeria/genética
3.
Appl Environ Microbiol ; 88(2): e0158221, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731051

RESUMO

The disinfectant peracetic acid (PAA) can cause high levels of sublethal injury to Listeria monocytogenes. This study aims to evaluate phenotypic and transcriptional characteristics concerning the surface attachment and virulence potential of sublethally injured L. monocytogenes ScottA and EGDe after exposure to 0.75 ppm PAA for 90 min at 4°C and subsequent incubation in tryptic soy broth supplemented with yeast extract (TSBY) at 4°C. The results showed that injured L. monocytogenes cells (99% of the total population) were able to attach (after 2 and 24 h) to stainless steel coupons at 4°C and 20°C. In vitro virulence assays using human intestinal epithelial Caco-2 cells showed that injured L. monocytogenes could invade host cells but could not proliferate intracellularly. The in vitro virulence response was strain dependent; injured ScottA was more invasive than EGDe. Assessment of PAA injury at the transcriptional level showed the upregulation of genes (motB and flaA) involved in flagellum motility and surface attachment. The transcriptional responses of L. monocytogenes EGDe and ScottA were different: only injured ScottA demonstrated upregulation of the virulence genes inlA and plcA. Downregulation of the stress-related genes fri and kat and upregulation of lmo0669 were observed in injured ScottA. The obtained results indicate that sublethally injured L. monocytogenes cells may retain part of their virulence properties as well as their ability to adhere to food-processing surfaces. Transmission to food products and the introduction of these cells into the food chain are therefore plausible scenarios that are worth taking into consideration in terms of risk assessment. IMPORTANCE L. monocytogenes is the causative agent of listeriosis, a serious foodborne illness. Antimicrobial practices such as disinfectants used for the elimination of this pathogen in the food industry can produce a sublethally injured population fraction. Injured cells of this pathogen that may survive antimicrobial treatment may pose a food safety risk. Nevertheless, knowledge regarding how sublethal injury may impact important cellular traits and phenotypic responses of this pathogen is limited. This work suggests that sublethally injured L. monocytogenes cells maintain virulence and surface attachment potential and highlights the importance of the occurrence of sublethally injured cells regarding food safety.


Assuntos
Listeria monocytogenes , Listeriose , Células CACO-2 , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/fisiologia , Ácido Peracético/farmacologia , Virulência/genética
4.
Food Microbiol ; 102: 103898, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809930

RESUMO

Due to climate change, with contaminated and less fertile soils, and intense weather phenomena, a turn towards hydroponic vegetable production has been made. Hydroponic cultivation of vegetables is considered to be a clean, safe and environmentally friendly growing technique; however, incidence of microbial contamination i.e. foodborne pathogens, might occur, endangering human health. The aim of this study was to investigate the effects of different plant growth stages, pH (values 5, 6, 7, 8) and bacterial inoculum levels (3 and 6 log cfu/mL) on hydroponically cultivated lettuce spiked with Salmonella Enteritidis. The results revealed that the pH and inoculum levels affected the internalization and survival of the pathogen in the hydroponic environment and plant tissue. Younger plants were found to be more susceptible to pathogen internalization compared to older ones. Under the current growing conditions (hydroponics, pH and inoculum levels), no leaf internalization was observed at all lettuce growth stages, despite the bacterium presence in the hydroponic solution. Noticeably, bacteria load at the nutrient solution was lower in low pH levels. These results showed that bacterium presence initiates plant response as indicated by the increased phenols, antioxidants and damage index markers (H2O2, MDA) in order for the plant to resist contamination by the invader. Nutrient solution management can result in Taylor-made recipes for plant growth and possible controlling the survival and growth of S. Enteritidis by pH levels.


Assuntos
Microbiologia de Alimentos , Lactuca , Salmonella enteritidis , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Hidroponia , Lactuca/microbiologia , Viabilidade Microbiana , Nutrientes , Salmonella enteritidis/crescimento & desenvolvimento , Temperatura , Verduras/microbiologia
5.
Food Microbiol ; 99: 103826, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119111

RESUMO

The aim of the present study was to evaluate the effect of oxygen availability (aerobic, hypoxic and anoxic conditions) and sub-optimal pH (6.2 and 5.5) in a structured medium (10% w/V gelatin) on the growth of two immobilized L. monocytogenes strains (C5, 6179) at 10 °C and their subsequent acid resistance (pH 2.0, e.g., gastric acidity). Anaerobic conditions resulted in lower bacterial population (P < 0.05) (7.8-8.2 log CFU/mL) at the end of storage than aerobic and hypoxic environment (8.5-9.0 log CFU/mL), a phenomenon that was intensified at lower pH (5.5), where no significant growth was observed for anaerobically grown cultures. Prolonged habituation of L. monocytogenes (15 days) at both pH increased its acid tolerance resulting in max. 10 times higher t4D (appx. 60 min). The combined effect though of oxygen availability and suboptimal pH on L. monocytogenes acid resistance was found to vary with the strain. Anoxically grown cultures at pH 5.5 exhibited the lowest tolerance towards lethal acid stress, with countable survivors occurring only until 20 min of exposure at pH 2.0. Elucidating the role of oxygen limiting conditions, often encountered in structured foods, on acid resistance of L. monocytogenes, would assist in assessing the capacity of L. monocytogenes originated from different food-related niches to withstand gastric acidity and possibly initiate infection.


Assuntos
Ácidos/metabolismo , Meios de Cultura/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Oxigênio/metabolismo , Anaerobiose , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Listeria monocytogenes/química
6.
Food Microbiol ; 95: 103680, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397612

RESUMO

The innate and inducible resistance of six Salmonella strains (4/74, FS8, FS115, P167807, ATCC 13076, WT) in mayonnaise at 5 °C following adaptation to different pH/undissociated acetic acid (UAA) combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) was investigated. The inherent and acid-induced responses were strain-dependent. Two strains (ATCC 13076, WT), albeit not the most resistant innately, exhibited the most prominent adaptive potential. Limited/no adaptability was observed regarding the rest strains, though being more resistant inherently. The individual effect of pH and UAA adaptation in the phenotypic and transcriptomic profiles of ATCC 13076 and WT was further examined. The type (pH, UAA) and magnitude of stress intensity affected their responses. Variations in the type and magnitude of stress intensity also determined the relative gene expression of four genes (adiA, cadB, rpoS, ompR) implicated in Salmonella acid resistance mechanisms. adiA and cadB were overexpressed following adaptation to some treatments; rpoS and ompR were downregulated following adaptation to 15mM/pH5.0 and 35mM/pH5.5, respectively. Nonetheless, the transcriptomic profiles did not always correlate with the corresponding phenotypes. In conclusion, strain variations in Salmonella are extensive. The ability of the strains to adapt and induce resistant phenotypes and acid resistance-related genes is affected by the type and magnitude of the stress applied during adaptation.


Assuntos
Ácido Acético/metabolismo , Condimentos/microbiologia , Salmonella/fisiologia , Ácido Acético/química , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Condimentos/análise , Microbiologia de Alimentos , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Refrigeração , Salmonella/genética
7.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32591377

RESUMO

Interactions between Listeria monocytogenes and food-associated or environmental bacteria are critical not only for the growth but also for a number of key biological processes of the microorganism. In this regard, limited information exists on the impact of other microorganisms on the virulence of L. monocytogenes In this study, the growth of L. monocytogenes was evaluated in a single culture or in coculture with L. innocua, Bacillus subtilis, Lactobacillus plantarum, or Pseudomonas aeruginosa in tryptic soy broth (10°C/10 days and 37°C/24 h). Transcriptional levels of 9 key virulence genes (inlA, inlB, inlC, inlJ, sigB, prfA, hly, plcA, and plcB) and invasion efficiency and intracellular growth in Caco-2 cells were determined for L. monocytogenes following growth in mono- or coculture for 3 days at 10°C or 9 h at 37°C. The growth of L. monocytogenes was negatively affected by the presence of L. innocua and B. subtilis, while the effect of cell-to-cell contact on L. monocytogenes growth was dependent on the competing microorganism. Cocultivation affected the in vitro virulence properties of L. monocytogenes in a microorganism-specific manner, with L. innocua mainly enhancing and B. subtilis reducing the invasion of the pathogen in Caco-2 cells. Assessment of the mRNA levels of L. monocytogenes virulence genes in the presence of the four tested bacteria revealed a complex pattern in which the observed up- or downregulation was only partially correlated with growth or in vitro virulence and mainly suggested that L. monocytogenes may display a microorganism-specific transcriptional response.IMPORTANCEListeria monocytogenes is the etiological agent of the severe foodborne disease listeriosis. Important insight regarding the physiology and the infection biology of this microorganism has been acquired in the past 20 years. However, despite the fact that L. monocytogenes coexists with various microorganisms throughout its life cycle and during transmission from the environment to foods and then to the host, there is still limited knowledge related to the impact of surrounding microorganisms on L. monocytogenes' biological functions. In this study, we showed that L. monocytogenes modulates specific biological activities (i.e., growth and virulence potential) as a response to coexisting microorganisms and differentially alters the expression of virulence-associated genes when confronted with different bacterial genera and species. Our work suggests that the interaction with different bacteria plays a key role in the survival strategies of L. monocytogenes and supports the need to incorporate biotic factors into the research conducted to identify mechanisms deployed by this organism for establishment in different environments.


Assuntos
Fenômenos Fisiológicos Bacterianos , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/crescimento & desenvolvimento , Especificidade da Espécie , Transcrição Gênica , Virulência/genética
8.
Food Microbiol ; 83: 200-210, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31202414

RESUMO

Fresh vegetables are important components of an everyday balanced diet making ready to-eat-salads (RTE) a commodity widely consumed. However, in the past few years these products have been linked with outbreaks of salmonellosis and listeriosis; thus the continuous investigation of their safety is an essential requirement. A total of 216 samples of ready-to-eat salads from the Cypriot market were analysed to determine the microbiological quality and safety, along with physicochemical attributes of the salads and identify possible correlations between them. The samples were randomly collected from four retail outlets and correspond to five different salad producing companies. Furthermore, the effects of season, salad producer and type of salad and/or their interactions with the tested parameters were investigated. The results revealed that the higher microbial load among seasons was observed in samples collected during spring. Escherichia coli was found in 11.57% of samples and 2.62% of isolates were found to be able to produce extended spectrum ß-lactamase (ESBL). All samples were found negative for Salmonella enterica, whereas Listeria monocytogenes was present in 3.70% of samples. Higher levels of spoilage bacteria (lactic acid bacteria and Pseudomonas spp.) were detected during winter and spring. Additionally, the %CO2 production was affected by the type of salad, while the interaction between producer and type of salad, affected total phenolic content and antioxidant activity of samples. A positive correlation of phenols and antioxidants with the presence of Staphylococcus spp., Pseudomonas spp., E. coli and Bacillus cereus was observed, suggesting that excessive handling increases microbial load and plant stress.


Assuntos
Carga Bacteriana , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Alimentos Crus/microbiologia , Verduras/microbiologia , Antioxidantes/análise , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Chipre , Escherichia coli/isolamento & purificação , Fast Foods/microbiologia , Listeria monocytogenes/isolamento & purificação , Fenóis/análise , Estações do Ano
9.
Food Microbiol ; 81: 12-21, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30910083

RESUMO

Fungi are common spoilers of intermediate moisture foods such as bakery products. Brioche are bakery products prone to fungal spoilage due to their pH (5.8-6.2) and water activity (aw) (0.82-0.84). The aims of the present study were: (i) the identification of fungal species occurring in brioche products, (ii) the in vitro assessment of their growth potential, and (iii) the development of a validated growth model following the gamma concept. A total of 102 fungal strains were isolated, with Penicillium sp., Cladosporium sp., and Aspergillus sp. being the main genera, representing 90% of the isolates. Given the isolation frequency, any potential fungal prevalence throughout the bakery processs and/or the results of in vitro assessment of fungal growth potential under conditions mimicking brioche (pH, aw, temperature), Aspergillus flavus, Aspergillus fumigatus, and Penicillium sp. were selected for the development of the gamma model. According to in vitro validation, the model successfully predicted fungal growth, while on in situ experiments, the intrinsic parameters (aw and/or level of used preservative) of brioche in combination with packaging conditions (modified atmosphere) did not allow fungal growth.


Assuntos
Pão/microbiologia , Microbiologia de Alimentos , Conservação de Alimentos , Fungos/crescimento & desenvolvimento , Modelos Teóricos , Aspergillus/crescimento & desenvolvimento , Cladosporium/crescimento & desenvolvimento , Manipulação de Alimentos , Indústria Alimentícia , Penicillium/crescimento & desenvolvimento , Temperatura , Água/metabolismo
10.
Int J Mol Sci ; 18(9)2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28850093

RESUMO

The aim of the present work was to evaluate the efficacy of Na-alginate edible films as vehicles for delivering probiotic bacteria to sliced ham with or without pretreatment using high pressure processing (HPP). Three strains of probiotic bacteria were incorporated in Na-alginate forming solution. Ham slices (with or without pretreatment using HPP at 500 MPa for 2 min) were packed under vacuum in contact with the films and then stored at 4, 8 and 12 °C for 66, 47 and 40 days, respectively. Microbiological analysis was performed in parallel with pH and color measurements. Sensory characteristics were assessed, while the presence and the relative abundance of each probiotic strain during storage was evaluated using pulsed field gel electrophoresis. In ham slices without HPP treatment, probiotic bacteria were enumerated above 106 CFU/g during storage at all temperatures. Same results were obtained in cases of HPP treated samples, but pH measurements showed differences with the latter ones exhibiting higher values. Sensory evaluation revealed that probiotic samples had a more acidic taste and odor than the control ones, however these characteristics were markedly compromised in samples treated with HPP. Overall, the results of the study are promising since probiotic bacteria were successfully delivered in the products by edible films regardless of the HPP treatment.


Assuntos
Alginatos/farmacologia , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Probióticos , Alginatos/química , Animais , Contaminação de Alimentos , Manipulação de Alimentos , Embalagem de Alimentos , Conservação de Alimentos , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Pressão Hidrostática , Listeria monocytogenes , Carne Vermelha/microbiologia , Vácuo
11.
Appl Environ Microbiol ; 82(23): 6846-6858, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637880

RESUMO

Various Listeria monocytogenes strains may contaminate a single food product, potentially resulting in simultaneous exposure of consumers to multiple strains. However, due to bias in strain recovery, L. monocytogenes strains isolated from foods by selective enrichment (SE) might not always represent those that can better survive the immune system of a patient. We investigated the effect of cocultivation in tryptic soy broth with 0.6% yeast extract (TSB-Y) at 10°C for 8 days on (i) the detection of L. monocytogenes strains during SE with the ISO 11290-1:1996/Amd 1:2004 protocol and (ii) the in vitro virulence of strains toward the Caco-2 human colon epithelial cancer cell line following exposure to simulated gastric fluid (SGF; pH 2.0)-HCl (37°C). We determined whether the strains which were favored by SE would be effective competitors under the conditions of challenges related to gastrointestinal passage of the pathogen. Interstrain competition of L. monocytogenes in TSB-Y determined the relative population of each strain at the beginning of SE. This in turn impacted the outcome of SE (i.e., favoring survival of competitors with better fitness) and the levels exposed subsequently to SGF. However, strong growth competitors could be outcompeted after SGF exposure and infection of Caco-2 cells by strains outgrown in TSB-Y and underdetected (or even missed) during enrichment. Our data demonstrate a preferential selection of certain L. monocytogenes strains during enrichments, often not reflecting a selective advantage of strains during infection. These findings highlight a noteworthy scenario associated with the difficulty of matching the source of infection (food) with the L. monocytogenes isolate appearing to be the causative agent during listeriosis outbreak investigations.IMPORTANCE This report is relevant to understanding the processes involved in selection and prevalence of certain L. monocytogenes strains in different environments (i.e., foods or sites of humans exposed to the pathogen). It highlights the occurrence of multiple strains in the same food as an important aspect contributing to mismatches between clinical isolates and infection sources during listeriosis outbreak investigations.

12.
Food Microbiol ; 45(Pt B): 254-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25500391

RESUMO

Cutting and shredding of leafy vegetables increases the risk of cross contamination in household settings. The distribution of Escherichia coli O157:H7 and Listeria monocytogenes transfer rates (Tr) between cutting knives and lettuce leaves was investigated and a semi-mechanistic model describing the bacterial transfer during consecutive cuts of leafy vegetables was developed. For both pathogens the distribution of log10Trs from lettuce to knife was towards low values. Conversely log10Trs from knife to lettuce ranged from -2.1 to -0.1 for E. coli O157:H7 and -2.0 to 0 for L. monocytogenes, and indicated a more variable phenomenon. Regarding consecutive cuts, a rapid initial transfer was followed by an asymptotic tail at low populations moving to lettuce or residing on knife. E. coli O157:H7 was transferred at slower rates than L. monocytogenes. These trends were sufficiently described by the transfer-model, with RMSE values of 0.426-0.613 and 0.531-0.908 for L. monocytogenes and E. coli O157:H7, respectively. The model showed good performance in validation trials but underestimated bacterial transfer during extrapolation experiments. The results of the study can provide information regarding cross contamination events in a common household. The constructed model could be a useful tool for the risk-assessment during preparation of leafy-green salads.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/instrumentação , Lactuca/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Verduras/microbiologia , Escherichia coli O157/química , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Listeria monocytogenes/química , Modelos Teóricos
13.
Food Res Int ; 191: 114684, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059941

RESUMO

Studies of classical microbiology rely on the average behaviour of large cell populations without considering that clonal bacterial populations may bifurcate into phenotypic distinct sub-populations by random switching mechanisms.Listeria monocytogenes exposure to sublethal stresses may induce different physiological states that co-exist (i.e., sublethal injury or dormancy) and present variable resuscitation capacity. Exposures to peracetic acid (PAA; 10-30 ppm; for 3 h), acetic acid and hydrochloric acid (AA and HCl; pH 3.0-2.5; for 5 h) at 20 °C were used to induce different physiological states in L. monocytogenes, Scott A strain. After stress exposure, colony growth of single cells was monitored, on Tryptic Soy Agar supplemented with 0.6 % Yeast Extract, using time-lapse microscopy, at 37 °C. Images were acquired every 5 min and were analyzed using BaSCA framework. Most of the obtained growth curves of the colonies were fitted to the model of Baranyi and Roberts for the estimation of lag time (λ) and maximum specific growth rate (µmax), except the ones obtained after exposure to AA pH 2.7 and 2.5 that were fitted to the Trilinear model. The data of λ and µmax that followed a multivariate normal distribution were used to predict growth variability using Monte Carlo simulations. Outgrowth kinetics after treatment with AA (pH 2.7 and 2.5; for 5 h at 20 °C), PAA (30 ppm; for 3 h at 20 °C) revealed that these stress conditions increase the skewness of the variability distributions to the right, meaning that the variability in lag times increases in favour of longer outgrowth. Exposures to AA pH 2.5 and 30 ppm PAA resulted in two distinct subpopulations per generation with different growth dynamics. This switching mechanism may have evolved as a survival strategy for L. monocytogenes cells, maximizing the chances of survival. Simulation of microbial growth showed that heterogeneity in growth dynamics is increased when cells are recovering from exposure to sublethal stresses (i.e. PAA and acidic conditions) that may induce injury or dormancy.


Assuntos
Ácido Acético , Listeria monocytogenes , Ácido Peracético , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/efeitos dos fármacos , Ácido Peracético/farmacologia , Concentração de Íons de Hidrogênio , Ácido Acético/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Ácido Clorídrico/farmacologia , Modelos Biológicos , Estresse Fisiológico
14.
Int J Food Microbiol ; 421: 110786, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879956

RESUMO

Exposure to sublethal stresses related to food-processing may induce a heterogenous mixture of cells that co-exist, comprising healthy, sublethally injured, dormant and dead cells. Heterogeneity in survival capacity and dormancy of single cells may impede the detection of foodborne pathogens. In this study, we exposed Listeria monocytogenes Scott A strain, to peracetic acid (PAA; 20-40 ppm) and to acidic conditions (hydrochloric (HCl) and acetic (AA) acid, adjusted to pH 2.7-3.0, to evaluate the resuscitation capacity and outgrowth kinetics of metabolically active cells in two different media. Injury and the viable-but-non-culturable (VBNC) status of cells were assessed by flow cytometry using CFDA (metabolically active) and PI (dead) staining. Stressed CFDA+PI- cells were sorted on Tryptic Soy (TS) Agar or in TS broth, both supplemented with 0.6 % Yeast Extract (TSAYE or TSBYE), to evaluate culturability. Resuscitation capacity of CFDA+PI-sorted cells (10 events/well) was monitored by visual inspection on TSAYE and by optical density measurement in TSBYE for 5 days. Sorting of L. monocytogenes viable cells (CFDA+PI-) in Ringer's solution on TSAYE and TSBYE showed 100 % recovery in both media (control condition), while the mean lag time in TSBYE was 9.6 h. Treatment with 20 ppm PAA for 90 and 180 min resulted in 74.79 % and 85.82 % of non-culturable cells in TSBYE and increased the average lag time to 41.7 h and 43.8 h, respectively, compared to the control (9.6 h). The longest average lag time (79.5 h) was detected after treatment with 30 ppm PAA for 90 min, while at the same condition sorting of CFDA+PI- cells resulted in 95.05 % and 93.94 % non-culturable cells on TSAYE and TSBYE, respectively. The highest percentage of wells with non-culturable cells (96.17 %) was detected on TSAYE after treatment with 40 ppm PAA for 30 min. Fractions of VBNC cells were detected in TSBYE after treatment with HCl pH 3.0 for 60 and 240 min, and in TSAYE and TSBYE after exposure to AA pH 2.7. Treatment with AA pH 2.7 for 150-300 min increased the range of recorded lag time values compared to 60 min, from 8.6 h up to 13.3 h, as well as the mean lag times in TSBYE. Modelling of the outgrowth kinetics comparing the two types of stress (oxidative vs acid) and the two systems of growth (colonial vs planktonic) revealed that low starting concentrations hindered the detection of viable L. monocytogenes cells, either due to VBNC induction or cell heterogeneity.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes , Listeria monocytogenes/crescimento & desenvolvimento , Viabilidade Microbiana , Ácido Peracético/farmacologia , Ácido Acético/farmacologia , Concentração de Íons de Hidrogênio , Ácido Clorídrico/farmacologia , Contagem de Colônia Microbiana , Meios de Cultura/química , Estresse Fisiológico , Manipulação de Alimentos/métodos
15.
Ital J Food Saf ; 13(2): 12210, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38887591

RESUMO

In this pilot study, we compared the metagenomic profiles of different types of artisanal fermented meat products collected in Italy, Greece, Portugal, and Morocco to investigate their taxonomic profile, also in relation to the presence of foodborne pathogens and antimicrobial resistance genes. In addition, technical replicates of the same biological sample were tested to estimate the reproducibility of shotgun metagenomics. The taxonomic analysis showed a high level of variability between different fermented meat products at both the phylum and genus levels. Staphylococcus aureus was identified with the highest abundance in Italian fermented meat; Escherichia coli in fermented meat from Morocco; Salmonella enterica in fermented meat from Greece; Klebsiella pneumoniae and Yersinia enterocolitica in fermented meat from Portugal. The fungi Aspergillus, Neosartoria, Emericella, Penicillum and Debaryomyces showed a negative correlation with Lactococcus, Enterococcus, Streptococcus, Leuconostoc and Lactobacillus. The resistome analysis indicated that genes conferring resistance to aminoglycoside, macrolide, and tetracycline were widely spread in all samples. Our results showed that the reproducibility between technical replicates tested by shotgun metagenomic was very high under the same conditions of analysis (either DNA extraction, library preparation, sequencing analysis, and bioinformatic analysis), considering both the degree of overlapping and the pairwise correlation.

16.
Pathogens ; 13(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057784

RESUMO

Globally, fresh vegetables or minimally processed salads have been implicated in several foodborne disease outbreaks. This work studied the effect of Lactiplantibacillus pentosus FMCC-B281 cells (F) and its supernatant (S) on spoilage and on the fate of Listeria monocytogenes and Escherichia coli O157:H7 on fresh-cut ready-to-eat (RTE) salads during storage. Also, Fourier transform infrared (FTIR) and multispectral imaging (MSI) analysis were used as rapid and non-destructive techniques to estimate the microbiological status of the samples. Fresh romaine lettuce, rocket cabbage, and white cabbage were used in the present study and were inoculated with L. pentosus and the two pathogens. The strains were grown at 37 °C for 24 h in MRS and BHI broths, respectively, and then were centrifuged to collect the supernatant and the pellet (cells). Cells (F, ~5 log CFU/g), the supernatant (S), and a control (C, broth) were used to spray the leaves of each fresh vegetable that had been previously contaminated (sprayed) with the pathogen (3 log CFU/g). Subsequently, the salads were packed under modified atmosphere packaging (10%CO2/10%O2/80%N2) and stored at 4 and 10 °C until spoilage. During storage, microbiological counts and pH were monitored in parallel with FTIR and MSI analyses. The results showed that during storage, the population of the pathogens increased for lettuce and rocket independent of the treatment. For cabbage, pathogen populations remained stable throughout storage. Regarding the spoilage microbiota, the Pseudomonas population was lower in the F samples, while no differences in the populations of Enterobacteriaceae and yeasts/molds were observed for the C, F, and S samples stored at 4 °C. According to sensory evaluation, the shelf-life was shorter for the control samples in contrast to the S and F samples, where their shelf-life was elongated by 1-2 days. Initial pH values were ca. 6.0 for the three leafy vegetables. An increase in the pH of ca. 0.5 values was recorded until the end of storage at both temperatures for all cases of leafy vegetables. FTIR and MSI analyses did not satisfactorily lead to the estimation of the microbiological quality of salads. In conclusion, the applied bioprotective strain (L. pentosus) can elongate the shelf-life of the RTE salads without an effect on pathogen growth.

17.
EFSA J ; 22(7): e8883, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015303

RESUMO

The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.

18.
EFSA J ; 22(4): e8745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681740

RESUMO

Two alternative methods for producing compost in a tunnel, from certain category (Cat.) 3 animal by-products (ABP) and other non-ABP material, were assessed. The first method proposed a minimum temperature of 55°C for 72 h and the second 60°C for 48 h, both with a maximum particle size of 200 mm. The assessment of the Panel on Biological Hazards (BIOHAZ) exclusively focused on Cat. 3 ABP materials (catering waste and processed foodstuffs of animal origin no longer intended for human consumption). The proposed composting processes were evaluated for their efficacy to achieve a reduction of at least 5 log10 of Enterococcus faecalis and Salmonella Senftenberg (775W, H2S negative) and at least 3 log10 of relevant thermoresistant viruses. The applicant provided a list of biological hazards that may enter the composting process and selected parvoviruses as the indicator of the thermoresistant viruses. The evidence provided by the applicant included: (a) literature data on thermal inactivation of biological hazards; (b) results from validation studies on the reduction of E. faecalis, Salmonella Senftenberg 775W H2S negative and canine parvovirus carried out in composting plants across Europe; (c) and experimental data from direct measurements of reduction of infectivity of murine parvovirus in compost material applying the time/temperature conditions of the two alternative methods. The evidence provided showed the capacity of the proposed alternative methods to reduce E. faecalis and Salmonella Senftenberg 775W H2S negative by at least 5 log10, and parvoviruses by at least 3 log10. The BIOHAZ Panel concluded that the two alternative methods under assessment can be considered to be equivalent to the processing method currently approved in the Commission Regulation (EU) No 142/2011.

19.
EFSA J ; 22(7): e8882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040570

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. The TUs in the QPS list were updated based on a verification, against their respective authoritative databases, of the correctness of the names and completeness of synonyms. A new procedure has been established to ensure the TUs are kept up to date in relation to recent taxonomical insights. Of 83 microorganisms notified to EFSA between October 2023 and March 2024 (47 as feed additives, 25 as food enzymes or additives, 11 as novel foods), 75 were not evaluated because: 15 were filamentous fungi, 1 was Enterococcus faecium, 10 were Escherichia coli, 1 was a Streptomyces (all excluded from the QPS evaluation) and 48 were TUs that already have a QPS status. Two of the other eight notifications were already evaluated for a possible QPS status in the previous Panel Statement: Heyndrickxia faecalis (previously Weizmannia faecalis) and Serratia marcescens. One was notified at genus level so could not be assessed for QPS status. The other five notifications belonging to five TUs were assessed for possible QPS status. Akkermansia muciniphila and Actinomadura roseirufa were still not recommended for QPS status due to safety concerns. Rhizobium radiobacter can be recommended for QPS status with the qualification for production purposes. Microbacterium arborescens and Burkholderia stagnalis cannot be included in the QPS list due to a lack of body of knowledge for its use in the food and feed chain and for B. stagnalis also due to safety concerns. A. roseirufa and B. stagnalis have been excluded from further QPS assessment.

20.
EFSA J ; 22(7): e8896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39045511

RESUMO

Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA