Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2212685120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094145

RESUMO

Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.


Assuntos
Corpo Humano , Melatonina , Masculino , Humanos , Feminino , Luz , Ritmo Circadiano/fisiologia , Sono/fisiologia , Melatonina/metabolismo , Metabolômica
2.
PLoS Biol ; 20(3): e3001571, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298459

RESUMO

Ocular light exposure has important influences on human health and well-being through modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive functions. Prevailing patterns of light exposure do not optimally engage these actions for many individuals, but advances in our understanding of the underpinning mechanisms and emerging lighting technologies now present opportunities to adjust lighting to promote optimal physical and mental health and performance. A newly developed, international standard provides a SI-compliant way of quantifying the influence of light on the intrinsically photosensitive, melanopsin-expressing, retinal neurons that mediate these effects. The present report provides recommendations for lighting, based on an expert scientific consensus and expressed in an easily measured quantity (melanopic equivalent daylight illuminance (melaponic EDI)) defined within this standard. The recommendations are supported by detailed analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to ocular light and provide a straightforward framework to inform lighting design and practice.


Assuntos
Sono , Vigília , Adulto , Ritmo Circadiano/fisiologia , Cognição , Olho , Humanos , Iluminação , Sono/fisiologia , Vigília/fisiologia
3.
J Proteome Res ; 23(5): 1547-1558, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619923

RESUMO

Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.


Assuntos
Ritmo Circadiano , Inflamação , Insulina , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Insulina/metabolismo , Insulina/sangue , Inflamação/metabolismo , Inflamação/sangue , Masculino , Adulto , Jornada de Trabalho em Turnos , Feminino , Proteômica/métodos , Glicemia/metabolismo , Transdução de Sinais , Resistência à Insulina , Adulto Jovem
4.
FASEB J ; 37(4): e22827, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856610

RESUMO

Metabolic rhythms include rapid, ultradian (hourly) dynamics, but it remains unclear what their relationship to circadian metabolic rhythms is, and what role meal timing plays in coordinating these ultradian rhythms in metabolism. Here, we characterized widespread ultradian rhythms under ad libitum feeding conditions in the plasma metabolome of the vole, the gold standard animal model for behavioral ultradian rhythms, naturally expressing ~2-h foraging rhythms throughout the day and night. These ultradian metabolite rhythms co-expressed with diurnal 24-h rhythms in the same metabolites and did not align with food intake patterns. Specifically, under light-dark entrained conditions we showed twice daily entrainment of phase and period of ultradian behavioral rhythms associated with phase adjustment of the ultradian cycle around the light-dark and dark-light transitions. These ultradian activity patterns also drove an ultradian feeding pattern. We used a unique approach to map this behavioral activity/feeding status to high temporal resolution (every 90 min) measures of plasma metabolite profiles across the 24-h light-dark cycle. A total of 148 known metabolites were detected in vole plasma. Supervised, discriminant analysis did not group metabolite concentration by feeding status, instead, unsupervised clustering of metabolite time courses revealed clusters of metabolites that exhibited significant ultradian rhythms with periods different from the feeding cycle. Two clusters with dissimilar ultradian dynamics, one lipid-enriched (period = 3.4 h) and one amino acid-enriched (period = 4.1 h), both showed co-expression with diurnal cycles. A third cluster solely comprised of glycerophospholipids (specifically ether-linked phosphatidylcholines) expressed an 11.9 h ultradian rhythm without co-expressed diurnal rhythmicity. Our findings show coordinated co-expression of diurnal metabolic rhythms with rapid dynamics in feeding and metabolism. These findings reveal that ultradian rhythms are integral to biological timing of metabolic regulation, and will be important in interpreting the impact of circadian desynchrony and meal timing on metabolic rhythms.


Assuntos
Ritmo Ultradiano , Animais , Metaboloma , Ritmo Circadiano , Aminoácidos , Arvicolinae
5.
Pharmacol Res ; 199: 107011, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029806

RESUMO

BACKGROUND: Night shift work is associated with sleep disturbances, obesity, and cardiometabolic diseases. Disruption of the circadian clock system has been suggested to be an independent cause of type 2 diabetes and cardiovascular disease in shift workers. We aimed to improve alignment of circadian timing with social and environmental factors with administration of melatonin. METHODS: In a randomized, placebo-controlled, prospective study, we analysed the effects of 2 mg of sustained-release melatonin versus placebo on glucose tolerance, insulin resistance indices, sleep quality, circadian profiles of plasma melatonin and cortisol, and diurnal blood pressure profiles in 24 rotating night shift workers during 12 weeks of treatment, followed by 12 weeks of wash-out. In a novel design, the time of melatonin administration (at night or in the morning) depended upon the shift schedule. We also compared the baseline profiles of the night shift (NS) workers with 12 healthy non-night shift (NNS)-working controls. RESULTS: We found significantly impaired indices of insulin resistance at baseline in NS versus NNS (p < 0.05), but no differences in oral glucose tolerance tests nor in the diurnal profiles of melatonin, cortisol, or blood pressure. Twelve weeks of melatonin treatment did not significantly improve insulin resistance, nor did it significantly affect diurnal blood pressure or melatonin and cortisol profiles. Melatonin administration, however, caused a significant improvement in sleep quality which was significantly impaired in NS versus NNS at baseline (p < 0.001). CONCLUSIONS: Rotating night shift work causes mild-to-moderate impairment of sleep quality and insulin resistance. Melatonin treatment at bedtime improves sleep quality, but does not significantly affect insulin resistance in rotating night shift workers after 12 weeks of administration.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Melatonina , Humanos , Sono , Melatonina/uso terapêutico , Melatonina/farmacologia , Ritmo Circadiano , Hidrocortisona/farmacologia , Pressão Sanguínea , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Prospectivos
6.
J Pineal Res ; 76(5): e12985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888087

RESUMO

Previous studies have reported inconsistent results about exogenous melatonin's sleep-promoting effects. A possible explanation relies on the heterogeneity in administration schedule and dose, which might be accountable for differences in treatment efficacy. In this paper, we undertook a systematic review and meta-analysis of double-blind, randomized controlled trials performed on patients with insomnia and healthy volunteers, evaluating the effect of melatonin administration on sleep-related parameters. The standardized mean difference between treatment and placebo groups in terms of sleep onset latency and total sleep time were used as outcomes. Dose-response and meta-regression models were estimated to explore how time of administration, dose, and other treatment-related parameters might affect exogenous melatonin's efficacy. We included 26 randomized controlled trials published between 1987 and 2020, for a total of 1689 observations. Dose-response meta-analysis showed that melatonin gradually reduces sleep onset latency and increases total sleep time, peaking at 4 mg/day. Meta-regression models showed that insomnia status (ß = 0.50, p < 0.001) and time between treatment administration and the sleep episode (ß = -0.16, p = 0.023) were significant predictors of sleep onset latency, while the time of day (ß = -0.086, p < 0.01) was the only significant predictor of total sleep time. Our results suggest that advancing the timing of administration (3 h before the desired bedtime) and increasing the administered dose (4 mg/day), as compared to the exogenous melatonin schedule most used in clinical practice (2 mg 30 min before the desired bedtime), might optimize the efficacy of exogenous melatonin in promoting sleep.


Assuntos
Melatonina , Ensaios Clínicos Controlados Aleatórios como Assunto , Distúrbios do Início e da Manutenção do Sono , Melatonina/administração & dosagem , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Relação Dose-Resposta a Droga , Sono/efeitos dos fármacos
7.
J Peripher Nerv Syst ; 29(1): 58-71, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126610

RESUMO

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated. METHODS: Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis. RESULTS: At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration. INTERPRETATION: Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Animais , Masculino , Ratos , Síndromes Neurotóxicas/patologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Ratos Wistar , Pele/patologia
8.
Eur J Nutr ; 63(2): 527-537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082033

RESUMO

PURPOSE: Time-related eating patterns have been associated with metabolic and nutritional diseases such as obesity. However, there is a lack of representative studies on this subject. This study's aim was to assess the association between the timing of eating and obesity in a large and representative sample of the Brazilian adult population (POF 2008-2009 survey). METHODS: Two days of adults' food diary (n = 21,020) were used to estimate tertiles of first and last meal intake times, eating midpoint, caloric midpoint time, and calories consumed from 18:00 h onwards. BMI was estimated and its values, as well as excess weight (BMI ≥ 25 kg/m2) and obesity (BMI ≥ 30 kg/m2) were used as outcomes. Multiple linear and logistic regressions were performed. RESULTS: The first (ß = 0.65, 95% CI 0.37-0.93) and last food intake time (ß = 0.40, 95% CI 0.14-0.66), eating midpoint (ß = 0.61, 95% CI 0.34-0.88) and calories consumed after 21:00 h (ß = 0.74, 95% CI 0.32-1.16) and 22:00 h (ß = 0.75, 95% CI 0.18-1.32) were positively associated with BMI. The likelihood of having excess weight or obesity was significantly higher in the third tertile of the first food intake time (OR = 1.28, 95% CI 1.13-1.45 and OR = 1.34, 95% CI 1.13-1.58, respectively), last food intake time (OR = 1.16, 95% CI 1.03-1.32; and OR = 1.18, 95% CI 1.00-1.41, respectively), eating midpoint (OR = 1.28, 95% CI 1.13-1.45; and OR = 1.35, 95% CI 1.14-1.59, respectively) and energy consumption after 21:00 h (OR = 1.33, 95% CI 1.10-1.59). CONCLUSION: Chrononutrition meal patterns indicative of late meal intake were significantly associated with high BMI, excess weight and obesity in the Brazilian population.


Assuntos
Ingestão de Energia , Obesidade , Adulto , Humanos , Índice de Massa Corporal , Obesidade/epidemiologia , Aumento de Peso , Refeições , Comportamento Alimentar , Ingestão de Alimentos
9.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762673

RESUMO

The global COVID-19 pandemic resulted in widespread harms but also rapid advances in vaccine development, diagnostic testing, and treatment. As the disease moves to endemic status, the need to identify characteristic biomarkers of the disease for diagnostics or therapeutics has lessened, but lessons can still be learned to inform biomarker research in dealing with future pathogens. In this work, we test five sets of research-derived biomarkers against an independent targeted and quantitative Liquid Chromatography-Mass Spectrometry metabolomics dataset to evaluate how robustly these proposed panels would distinguish between COVID-19-positive and negative patients in a hospital setting. We further evaluate a crowdsourced panel comprising the COVID-19 metabolomics biomarkers most commonly mentioned in the literature between 2020 and 2023. The best-performing panel in the independent dataset-measured by F1 score (0.76) and AUROC (0.77)-included nine biomarkers: lactic acid, glutamate, aspartate, phenylalanine, ß-alanine, ornithine, arachidonic acid, choline, and hypoxanthine. Panels comprising fewer metabolites performed less well, showing weaker statistical significance in the independent cohort than originally reported in their respective discovery studies. Whilst the studies reviewed here were small and may be subject to confounders, it is desirable that biomarker panels be resilient across cohorts if they are to find use in the clinic, highlighting the importance of assessing the robustness and reproducibility of metabolomics analyses in independent populations.


Assuntos
COVID-19 , Pandemias , Humanos , Reprodutibilidade dos Testes , COVID-19/diagnóstico , Metabolômica/métodos , Biomarcadores/metabolismo
10.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292938

RESUMO

Treatments for COVID-19 infections have improved dramatically since the beginning of the pandemic, and glucocorticoids have been a key tool in improving mortality rates. The UK's National Institute for Health and Care Excellence guidance is for treatment to be targeted only at those requiring oxygen supplementation, however, and the interactions between glucocorticoids and COVID-19 are not completely understood. In this work, a multi-omic analysis of 98 inpatient-recruited participants was performed by quantitative metabolomics (using targeted liquid chromatography-mass spectrometry) and data-independent acquisition proteomics. Both 'omics datasets were analysed for statistically significant features and pathways differentiating participants whose treatment regimens did or did not include glucocorticoids. Metabolomic differences in glucocorticoid-treated patients included the modulation of cortisol and bile acid concentrations in serum, but no alleviation of serum dyslipidemia or increased amino acid concentrations (including tyrosine and arginine) in the glucocorticoid-treated cohort relative to the untreated cohort. Proteomic pathway analysis indicated neutrophil and platelet degranulation as influenced by glucocorticoid treatment. These results are in keeping with the key role of platelet-associated pathways and neutrophils in COVID-19 pathogenesis and provide opportunity for further understanding of glucocorticoid action. The findings also, however, highlight that glucocorticoids are not fully effective across the wide range of 'omics dysregulation caused by COVID-19 infections.


Assuntos
Tratamento Farmacológico da COVID-19 , Glucocorticoides , Humanos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Proteômica/métodos , Hidrocortisona , Metabolômica/métodos , Aminoácidos/metabolismo , Tirosina , Arginina , Ácidos e Sais Biliares
11.
Neuroimage ; 232: 117840, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577933

RESUMO

BACKGROUND: Functional connectivity (FC) of the motor network (MN) is often used to investigate how intrinsic properties of the brain are associated with motor abilities and performance. In addition, the MN is a key feature in clinical work to map the recovery after stroke and aid the understanding of neurodegenerative disorders. Time of day variation and individual differences in circadian timing, however, have not yet been considered collectively when looking at FC. METHODS: A total of 33 healthy, right handed individuals (13 male, 23.1 ± 4.2 years) took part in the study. Actigraphy, sleep diaries and circadian phase markers (dim light melatonin onset and cortisol awakening response) were used to determine early (ECP, n = 13) and late (LCP, n = 20) circadian phenotype groups. Resting state functional MRI testing sessions were conducted at 14:00 h, 20:00 h and 08:00 h and preceded by a maximum voluntary contraction test for isometric grip strength to measure motor performance. RESULTS: Significant differences in FC of the MN between ECPs and LCPs were found, as well as significant variations between different times of day. A higher amplitude in diurnal variation of FC and performance was observed in LCPs compared to ECPs, with the morning being most significantly affected. Overall, lower FC was significantly associated with poorer motor performance. DISCUSSION: Our findings uncover intrinsic differences between times of day and circadian phenotype groups. This suggests that central mechanisms contribute to diurnal variation in motor performance and the functional integrity of the MN at rest influences the ability to perform in a motor task.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Rede Nervosa/fisiologia , Fenótipo , Desempenho Psicomotor/fisiologia , Actigrafia/métodos , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Força da Mão/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
12.
Proc Biol Sci ; 288(1955): 20210721, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34284625

RESUMO

Humans have largely supplanted natural light cycles with a variety of electric light sources and schedules misaligned with day-night cycles. Circadian disruption has been linked to a number of disease processes, but the extent of circadian disruption among the population is unknown. In this study, we measured light exposure and wrist temperature among residents of an urban area during each of the four seasons, as well as light illuminance in nearby outdoor locations. Daily light exposure was significantly lower for individuals, compared to outdoor light sensors, across all four seasons. There was also little seasonal variation in the realized photoperiod experienced by individuals, with the only significant difference occurring between winter and summer. We tested the hypothesis that differential light exposure impacts circadian phase timing, detected via the wrist temperature rhythm. To determine the influence of light exposure on circadian rhythms, we modelled the impact of morning and night-time light exposure on the timing of the maximum wrist temperature. We found that morning and night-time light exposure had significant but opposing impacts on maximum wrist temperature timing. Our results demonstrate that, within the range of exposure seen in everyday life, night-time light can delay the onset of the maximum wrist temperature, while morning light can lead to earlier onset. Our results demonstrate that humans are minimizing natural seasonal differences in light exposure, and that circadian shifts and disruptions may be a more regular occurrence in the general population than is currently recognized.


Assuntos
Ritmo Circadiano , Fotoperíodo , Humanos , Estações do Ano
13.
PLoS Biol ; 16(8): e2005750, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091978

RESUMO

Sleep is essential for optimal brain functioning and health, but the biological substrates through which sleep delivers these beneficial effects remain largely unknown. We used a systems genetics approach in the BXD genetic reference population (GRP) of mice and assembled a comprehensive experimental knowledge base comprising a deep "sleep-wake" phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation (SD). We present analytical tools to interactively interrogate the database, visualize the molecular networks altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disruption of sleep already extensively reshaped the systems genetics landscape by altering 60%-78% of the transcriptomes and the metabolome, with numerous genetic loci affecting the magnitude and direction of change. Systems genetics integrative analyses drawing on all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of insufficient sleep itself on the transcriptome and metabolome are far more widespread than previously reported.


Assuntos
Camundongos Endogâmicos/genética , Camundongos/genética , Sono/genética , Animais , Bases de Dados Factuais , Metaboloma/genética , Privação do Sono/genética , Transcriptoma/genética
14.
J Pineal Res ; 71(1): e12719, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33512714

RESUMO

Light influences diverse aspects of human physiology and behaviour including neuroendocrine function, the circadian system and sleep. A role for melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) in driving such effects is well established. However, rod and/or cone signals routed through ipRGCs could also influence "non-visual" spectral sensitivity. In humans, this has been most extensively studied for acute, light-dependent, suppression of nocturnal melatonin production. Of the published action spectra for melatonin suppression, one demonstrates a spectral sensitivity consistent with that expected for melanopsin while our own (using briefer 30 minute light exposures) displays very high sensitivity to short wavelength light, suggesting a contribution of S-cones. To clarify that possibility, six healthy young male participants were each exposed to 30 minutes of five irradiances of 415 nm monochromatic light (1-40 µW/cm2 ) across different nights. These data were then combined with the original action spectrum. The aggregated data are incompatible with the involvement of any single-opsin and multi-opsin models based on the original action spectrum (including Circadian Stimulus) fail to predict the responses to 415 nm stimuli. Instead, the extended action spectrum can be most simply approximated by an ~2:1 combination of melanopsin and S-cone signals. Such a model also better describes the magnitude of melatonin suppression observed in other studies using an equivalent 30 minute mono- or polychromatic light paradigm but not those using longer (90 minute) light exposures. In sum, these data provide evidence for an initial S-cone contribution to melatonin suppression that rapidly decays under extended light exposure.


Assuntos
Melatonina/biossíntese , Células Fotorreceptoras Retinianas Cones/metabolismo , Adulto , Ritmo Circadiano/fisiologia , Humanos , Luz , Masculino , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Opsinas de Bastonetes/metabolismo
15.
J Pineal Res ; 71(2): e12750, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091954

RESUMO

Shift workers experience chronic circadian misalignment, which can manifest itself in reduced melatonin production, and has been associated with metabolic disorders. In addition, chronotype modulates the effect of night shift work, with early types presenting greater circadian misalignment when working night shift as compared to late types. Melatonin supplementation has shown positive results reducing weight gain in animal models, but the effect of exogenous melatonin in humans on body weight in the context of shift work remains inconsistent. The aim of this study was thus to evaluate the effects of exogenous melatonin on circadian misalignment and body weight among overweight night shift workers, according to chronotype, under real-life conditions. We conducted a double-blind, randomized, placebo-controlled, crossover trial where melatonin (3 mg) or placebo was administered on non-night shift nights for 12 weeks in 27 female nurses (37.1 yo, ±5.9 yo; BMI 29.9 kg/m2 , ±3.3 kg/m2 ). Melatonin (or placebo) was only taken on nights when the participants did not work night shifts, that is, on nights when they slept (between night shifts and on days off). Composite Phase Deviations (CPD) of actigraphy-based mid-sleep timing were calculated to measure circadian misalignment. The analyses were performed for the whole group and by chronotype. We found approximately 20% reduction in circadian misalignment after exogenous melatonin administration considering all chronotypes. Moreover, melatonin supplementation in those who presented high circadian misalignment, as observed in early chronotypes, reduced body weight, BMI, waist circumference, and hip circumference, without any change in the participants' calorie intake or physical activity levels.


Assuntos
Melatonina , Jornada de Trabalho em Turnos , Peso Corporal , Ritmo Circadiano , Feminino , Humanos , Melatonina/metabolismo , Sono
16.
Proc Natl Acad Sci U S A ; 115(30): 7825-7830, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29991600

RESUMO

Misalignment between internal circadian rhythmicity and externally imposed behavioral schedules, such as occurs in shift workers, has been implicated in elevated risk of metabolic disorders. To determine underlying mechanisms, it is essential to assess whether and how peripheral clocks are disturbed during shift work and to what extent this is linked to the central suprachiasmatic nuclei (SCN) pacemaker and/or misaligned behavioral time cues. Investigating rhythms in circulating metabolites as biomarkers of peripheral clock disturbances may offer new insights. We evaluated the impact of misaligned sleep/wake and feeding/fasting cycles on circulating metabolites using a targeted metabolomics approach. Sequential plasma samples obtained during a 24-h constant routine that followed a 3-d simulated night-shift schedule, compared with a simulated day-shift schedule, were analyzed for 132 circulating metabolites. Nearly half of these metabolites showed a 24-h rhythmicity under constant routine following either or both simulated shift schedules. However, while traditional markers of the circadian clock in the SCN-melatonin, cortisol, and PER3 expression-maintained a stable phase alignment after both schedules, only a few metabolites did the same. Many showed reversed rhythms, lost their rhythms, or showed rhythmicity only under constant routine following the night-shift schedule. Here, 95% of the metabolites with a 24-h rhythmicity showed rhythms that were driven by behavioral time cues externally imposed during the preceding simulated shift schedule rather than being driven by the central SCN circadian clock. Characterization of these metabolite rhythms will provide insight into the underlying mechanisms linking shift work and metabolic disorders.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Jejum/sangue , Regulação da Expressão Gênica/fisiologia , Hidrocortisona/sangue , Melatonina/sangue , Proteínas Circadianas Period/biossíntese , Adulto , Feminino , Humanos , Masculino
17.
Eur J Neurosci ; 51(1): 366-378, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30929284

RESUMO

Disruption to sleep and circadian rhythms can impact on metabolism. The study aimed to investigate the effect of acute sleep deprivation on plasma melatonin, cortisol and metabolites, to increase understanding of the metabolic pathways involved in sleep/wake regulation processes. Twelve healthy young female participants remained in controlled laboratory conditions for ~92 hr with respect to posture, meals and environmental light (18:00-23:00 hr and 07:00-09:00 hr <8 lux; 23:00-07:00 hr 0 lux (sleep opportunity) or <8 lux (continuous wakefulness); 09:00-18:00 hr ~90 lux). Regular blood samples were collected for 70 hr for plasma melatonin and cortisol, and targeted liquid chromatography-mass spectrometry metabolomics. Timepoints between 00:00 and 06:00 hr for day 1 (baseline sleep), day 2 (sleep deprivation) and day 3 (recovery sleep) were analysed. Cosinor analysis and MetaCycle analysis were performed for detection of rhythmicity. Night-time melatonin levels were significantly increased during sleep deprivation and returned to baseline levels during recovery sleep. No significant differences were observed in cortisol levels. Of 130 plasma metabolites quantified, 41 metabolites were significantly altered across the study nights, with the majority decreasing during sleep deprivation, most notably phosphatidylcholines. In cosinor analysis, 58 metabolites maintained their rhythmicity across the study days, with the majority showing a phase advance during acute sleep deprivation. This observation differs to that previously reported for males. Our study is the first of metabolic profiling in females during sleep deprivation and recovery sleep, and offers a novel view of human sleep/wake regulation and sex differences.


Assuntos
Melatonina , Ritmo Circadiano , Feminino , Humanos , Hidrocortisona , Masculino , Sono , Privação do Sono
18.
Bipolar Disord ; 22(7): 693-710, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564457

RESUMO

BACKGROUND: Interest in biological clock pathways in bipolar disorders (BD) continues to grow, but there has yet to be an audit of circadian measurement tools for use in BD research and practice. PROCEDURE: The International Society for Bipolar Disorders Chronobiology Task Force conducted a critical integrative review of circadian methods that have real-world applicability. Consensus discussion led to the selection of three domains to review-melatonin assessment, actigraphy, and self-report. RESULTS: Measurement approaches used to quantify circadian function in BD are described in sufficient detail for researchers and clinicians to make pragmatic decisions about their use. A novel integration of the measurement literature is offered in the form of a provisional taxonomy distinguishing between circadian measures (the instruments and methods used to quantify circadian function, such as dim light melatonin onset) and circadian constructs (the biobehavioral processes to be measured, such as circadian phase). CONCLUSIONS: Circadian variables are an important target of measurement in clinical practice and biomarker research. To improve reproducibility and clinical application of circadian constructs, an informed systematic approach to measurement is required. We trust that this review will decrease ambiguity in the literature and support theory-based consideration of measurement options.


Assuntos
Transtorno Bipolar , Melatonina , Actigrafia , Transtorno Bipolar/diagnóstico , Ritmo Circadiano , Humanos , Reprodutibilidade dos Testes , Autorrelato
19.
J Psychiatry Neurosci ; 45(2): 79-87, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32096617

RESUMO

Background: Multiple lines of evidence suggest that the onset and course of bipolar disorder is influenced by environmental light conditions. Increased suppression of melatonin by light (supersensitivity) in patients with bipolar disorder has been postulated as an endophenotype by several studies. However, due to methodological shortcomings, the results of these studies remain inconclusive. This study investigated melatonin suppression in euthymic patients with bipolar I disorder using evening blue light specifically targeting the melanopsin system. Methods: Melatonin suppression was assessed in euthymic patients with bipolar I disorder and healthy controls by exposure to monochromatic blue light (λmax = 475 nm; photon density = 1.6 × 1013 photons/cm2/s) for 30 minutes at 2300 h, administered via a ganzfeld dome for highly uniform light exposure. Serum melatonin concentrations were determined from serial blood sampling via radioimmunoassay. All participants received mydriatic eye drops and were genotyped for the PER3 VNTR polymorphism to avoid or adjust for potential confounding. As secondary outcomes, serum melatonin concentrations during dark conditions and after monochromatic red light exposure (λmax = 624 nm; photon density = 1.6 × 1013 photons/cm2/s) were also investigated. Changes in subjective alertness were investigated for all 3 lighting conditions. Results: A total of 90 participants (57 controls, 33 bipolar I disorder) completed the study. Melatonin suppression by monochromatic blue light did not differ between groups (F1,80 = 0.56; p = 0.46). Moreover, there were no differences in melatonin suppression by monochromatic red light (F1,82 = 1.80; p = 0.18) or differences in melatonin concentrations during dark conditions (F1,74 = 1.16; p = 0.29). Healthy controls displayed a stronger increase in subjective alertness during exposure to blue light than patients with bipolar I disorder (t85 = 2.28; p = 0.027). Limitations: Large interindividual differences in melatonin kinetics may have masked a true difference. Conclusion: Despite using a large cohort and highly controlled laboratory conditions, we found no differences in melatonin suppression between euthymic patients with bipolar I disorder and healthy controls. These findings do not support the notion that supersensitivity is a valid endophenotype in bipolar I disorder.


Assuntos
Transtorno Bipolar/sangue , Luz , Melatonina/efeitos da radiação , Adulto , Estudos de Casos e Controles , Endofenótipos , Feminino , Humanos , Masculino , Melatonina/sangue , Pessoa de Meia-Idade , Estimulação Luminosa , Opsinas de Bastonetes
20.
J Pineal Res ; 68(2): e12624, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31742766

RESUMO

Melatonin is a pleiotrophic hormone, synthesised primarily by the pineal gland under the control of the suprachiasmatic nuclei (SCN). It not only provides a hormonal signal of darkness but also has neuroprotective properties. Huntington's disease (HD) is a progressive neurodegenerative disorder characterised by abnormal motor, cognitive and psychiatric symptoms. There is growing evidence, particularly from animal models, that circadian rhythms may also be disturbed in HD. We measured two circadian-regulated hormones, melatonin and cortisol, in plasma samples collected around-the-clock from normal and presymptomatic transgenic HD sheep (Ovis aries) at 5 and 7 years of age, to assess SCN-driven rhythms and the effect of genotype, sex and age. Melatonin-related precursors and metabolites (tryptophan, serotonin, kynurenine) were also measured by liquid chromatography (LC)-mass spectrometry (MS). At 5 years of age in both rams and ewes, plasma melatonin levels were significantly elevated in HD sheep. In ewes measured 2 years later, there was still a significant elevation of nocturnal melatonin. Furthermore, the daytime baseline levels of melatonin were significantly higher in HD sheep. Since increased melatonin could have global beneficial effects on brain function, we suggest that the increased melatonin measured in presymptomatic HD sheep is part of an autoprotective response to mutant huntingtin toxicity that may account, at least in part, for the late onset of disease that characterises HD.


Assuntos
Ritmo Circadiano , Doença de Huntington/sangue , Melatonina/sangue , Neuroproteção , Ovinos/sangue , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA