Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855978

RESUMO

Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe2 and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity. We show that spatial modulation of the dielectric environment within the photonic crystal unit cell results in the formation of two distinct excitonic species with significantly different nonlinear responses of the corresponding charged exciton-polaritons under optical pumping. This behavior enables optical switching with ultrashort laser pulses and can be sensitively controlled via an electrostatic gate voltage. Our results open new avenues toward the development of active polaritonic devices in a compact chip-compatible implementation.

2.
Nano Lett ; 23(17): 7876-7882, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638634

RESUMO

Guided 2D exciton-polaritons, resulting from the strong coupling of excitons in semiconductors with nonradiating waveguide modes, provide an attractive approach toward developing novel on-chip optical devices. These quasiparticles are characterized by long propagation distances and efficient nonlinear interactions but cannot be directly accessed from the free space. Here we demonstrate a powerful approach for probing and manipulating guided polaritons in a Ta2O5 slab integrated with a WS2 monolayer using evanescent coupling through a high-index solid immersion lens. Tuning the nanoscale lens-sample gap allows for extracting all of the intrinsic parameters of the system. We also demonstrate the transition from weak to strong coupling accompanied by the onset of the motional narrowing effect: with the increase of exciton-photon coupling strength, the inhomogeneous contribution to polariton line width, inherited from the exciton resonance, becomes fully lifted. Our results enable the development of integrated optics employing room-temperature exciton-polaritons in 2D semiconductor-based structures.

3.
Phys Rev Lett ; 125(4): 043603, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794814

RESUMO

Spectral filtering of resonance fluorescence is widely employed to improve single photon purity and indistinguishability by removing unwanted backgrounds. For filter bandwidths approaching the emitter linewidth, complex behavior is predicted due to preferential transmission of components with differing photon statistics. We probe this regime using a Purcell-enhanced quantum dot in both weak and strong excitation limits, finding excellent agreement with an extended sensor theory model. By changing only the filter width, the photon statistics can be transformed between antibunched, bunched, or Poissonian. Our results verify that strong antibunching and a subnatural linewidth cannot simultaneously be observed, providing new insight into the nature of coherent scattering.

4.
Opt Express ; 27(8): 10692-10704, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052924

RESUMO

Using a sub-millimeter exciton-polariton waveguide suitable for integrated photonics, we experimentally demonstrate nonlinear modulation of pico-Joule pulses at the same time as amplification sufficient to compensate the system losses. By comparison with a numerical model we explain the observed interplay of gain and nonlinearity as amplification of the interacting polariton field by stimulated scattering from an incoherent continuous-wave reservoir that is depleted by the pulses. This combination of gain and giant ultrafast nonlinearity operating on picosecond pulses has the potential to open up new directions in low-power all-optical information processing and nonlinear photonic simulation of conservative and driven-dissipative systems.

5.
Phys Rev Lett ; 123(16): 167403, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702333

RESUMO

Coherent scattering of light by a single quantum emitter is a fundamental process at the heart of many proposed quantum technologies. Unlike atomic systems, solid-state emitters couple to their host lattice by phonons. Using a quantum dot in an optical nanocavity, we resolve these interactions in both time and frequency domains, going beyond the atomic picture to develop a comprehensive model of light scattering from solid-state emitters. We find that even in the presence of a low-Q cavity with high Purcell enhancement, phonon coupling leads to a sideband that is completely insensitive to excitation conditions and to a nonmonotonic relationship between laser detuning and coherent fraction, both of which are major deviations from atomlike behavior.

6.
Opt Lett ; 43(18): 4526-4529, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211907

RESUMO

We study the influence of optical selection rules and polarization splittings on properties of exciton polaritons in a planar AlGaAs waveguide containing embedded GaAs quantum wells. We demonstrate that transverse electric and transverse magnetic modes couple differently with light- and heavy-hole quantum well excitons, which leads to distinct polarization splittings of the resulting polariton modes. The experimental data are in good agreement with modeling based on theoretical data for the optical selection rules for quantum well excitons.

7.
Nano Lett ; 15(3): 1559-63, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25674919

RESUMO

GaAs nanowires with elongated cross sections are formed using a catalyst-free growth technique. This is achieved by patterning elongated nanoscale openings within a silicon dioxide growth mask on a (111)B GaAs substrate. It is observed that MOVPE-grown vertical nanowires with cross section elongated in the [21̅1̅] and [1̅12] directions remain faithful to the geometry of the openings. An InGaAs quantum dot with weak radial confinement is realized within each nanowire by briefly introducing indium into the reactor during nanowire growth. Photoluminescence emission from an embedded nanowire quantum dot is strongly linearly polarized (typically >90%) with the polarization direction coincident with the axis of elongation. Linearly polarized PL emission is a result of embedding the quantum dot in an anisotropic nanowire structure that supports a single strongly confined, linearly polarized optical mode. This research provides a route to the bottom-up growth of linearly polarized single photon sources of interest for quantum information applications.

8.
Nano Lett ; 14(12): 6997-7002, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25381734

RESUMO

Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g((2)) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters.

9.
Sci Rep ; 14(1): 4450, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396018

RESUMO

Quantum dots are promising candidates for telecom single photon sources due to their tunable emission across the different low-loss telecommunications bands, making them compatible with existing fiber networks. Their suitability for integration into photonic structures allows for enhanced brightness through the Purcell effect, supporting efficient quantum communication technologies. Our work focuses on InAs/InP QDs created via droplet epitaxy MOVPE to operate within the telecoms C-band. We observe a short radiative lifetime of 340 ps, arising from a Purcell factor of 5, owing to integration of the QD within a low-mode-volume photonic crystal cavity. Through in-situ control of the sample temperature, we show both temperature tuning of the QD's emission wavelength and a preserved single photon emission purity at temperatures up to 25K. These findings suggest the viability of QD-based, cryogen-free C-band single photon sources, supporting applicability in quantum communication technologies.

10.
Light Sci Appl ; 12(1): 126, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221208

RESUMO

We present and experimentally study the effects of the photonic spin-orbit coupling on the real space propagation of polariton wavepackets in planar semiconductor microcavities and polaritonic analogues of graphene. In particular, we demonstrate the appearance of an analogue Zitterbewegung effect, a term which translates as 'trembling motion' in English, which was originally proposed for relativistic Dirac electrons and consisted of the oscillations of the centre of mass of a wavepacket in the direction perpendicular to its propagation. For a planar microcavity, we observe regular Zitterbewegung oscillations whose amplitude and period depend on the wavevector of the polaritons. We then extend these results to a honeycomb lattice of coupled microcavity resonators. Compared to the planar cavity, such lattices are inherently more tuneable and versatile, allowing simulation of the Hamiltonians of a wide range of important physical systems. We observe an oscillation pattern related to the presence of the spin-split Dirac cones in the dispersion. In both cases, the experimentally observed oscillations are in good agreement with theoretical modelling and independently measured bandstructure parameters, providing strong evidence for the observation of Zitterbewegung.

11.
ACS Photonics ; 9(2): 706-713, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35434181

RESUMO

Spin-dependent, directional light-matter interactions form the basis of chiral quantum networks. In the solid state, quantum emitters commonly possess circularly polarized optical transitions with spin-dependent handedness. We demonstrate numerically that spin-dependent chiral coupling can be realized by embedding such an emitter in a waveguide-coupled nanocavity, which supports two near-degenerate, orthogonally polarized cavity modes. The chiral behavior arises due to direction-dependent interference between the cavity modes upon coupling to two single-mode output waveguides. Notably, an experimentally realistic cavity design simultaneously supports near-unity chiral contrast, efficient (>95%) cavity-waveguide coupling and enhanced light-matter interaction strength (Purcell factor F P > 70). In combination, these parameters enable the development of highly coherent spin-photon interfaces ready for integration into nanophotonic circuits.

12.
Light Sci Appl ; 9: 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32284858

RESUMO

Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs. Here, we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe2 to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV, exhibiting large interaction-induced spectral blueshifts. The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector, in combination with effective reduction of the excitonic disorder through motional narrowing, results in small polariton linewidths below 3 meV. Together with a strongly wavevector-dependent Q-factor, this provides for the enhancement and control of polariton-polariton interactions and the resulting nonlinear optical effects, paving the way toward tuneable BIC-based polaritonic devices for sensing, lasing, and nonlinear optics.

13.
Light Sci Appl ; 8: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30651981

RESUMO

We demonstrate the generation of a spatiotemporal optical continuum in a highly nonlinear exciton-polariton waveguide using extremely low excitation powers (2-ps, 100-W peak power pulses) and a submillimeter device suitable for integrated optics applications. We observe contributions from several mechanisms over a range of powers and demonstrate that the strong light-matter coupling significantly modifies the physics involved in all of them. The experimental data are well understood in combination with theoretical modeling. The results are applicable to a wide range of systems with linear coupling between nonlinear oscillators and particularly to emerging polariton devices that incorporate materials, such as gallium nitride and transition metal dichalcogenide monolayers that exhibit large light-matter coupling at room temperature. These open the door to low-power experimental studies of spatiotemporal nonlinear optics in submillimeter waveguide devices.

14.
Nat Nanotechnol ; 13(9): 835-840, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013218

RESUMO

On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot-photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA