RESUMO
BACKGROUND: The growing availability of genomic resources in radiata pine paves the way for significant advances in fundamental and applied genomic research. We constructed robust high-density linkage maps based on exome-capture genotyping in two F1 populations, and used these populations to perform quantitative trait locus (QTL) scans, genomic prediction and quantitative analyses of genetic architecture for key traits targeted by tree improvement programmes. RESULTS: Our mapping approach used probabilistic error correction of the marker data, followed by an iterative approach based on stringent parameters. This approach proved highly effective in producing high-density maps with robust marker orders and realistic map lengths (1285-4674 markers per map, with sizes ranging from c. 1643-2292 cM, and mean marker intervals of 0.7-2.1 cM). Colinearity was high between parental linkage maps, although there was evidence for a large chromosomal rearrangement (affecting ~ 90 cM) in one of the parental maps. In total, 28 QTL were detected for growth (stem diameter) and wood properties (wood density and fibre properties measured by Silviscan) in the QTL discovery population, with 1-3 QTL of small to moderate effect size detected per trait in each parental map. Four of these QTL were validated in a second, unrelated F1 population. Results from genomic prediction and analyses of genetic architecture were consistent with those from QTL scans, with wood properties generally having moderate to high genomic heritabilities and predictive abilities, as well as somewhat less complex genetic architectures, compared to growth traits. CONCLUSIONS: Despite the economic importance of radiata pine as a plantation forest tree, robust high-density linkage maps constructed from reproducible, sequence-anchored markers have not been published to date. The maps produced in this study will be a valuable resource for several applications, including the selection of marker panels for genomic prediction and anchoring a recently completed de novo whole genome assembly. We also provide the first map-based evidence for a large genomic rearrangement in radiata pine. Finally, results from our QTL scans, genomic prediction, and genetic architecture analyses are informative about the genomic basis of variation in important phenotypic traits.
Assuntos
Pinus , Ligação Genética , Pinus/genética , Madeira/genética , Mapeamento Cromossômico/métodos , Genômica , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The global invasion, and subsequent spread and evolution of weeds provides unique opportunities to address fundamental questions in evolutionary and invasion ecology. Amaranthus palmeri is a widespread glyphosate-resistant (GR) weed in the USA. Since 2015, GR populations of A. palmeri have been confirmed in South America, raising questions about introduction pathways and the importance of pre- vs. post-invasion evolution of GR traits. We used RAD-sequencing genotyping to characterize genetic structure of populations from Brazil, Argentina, Uruguay and the USA. We also quantified gene copy number of the glyphosate target, 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS), and the presence of an extrachromosomal circular DNA (eccDNA) replicon known to confer glyphosate resistance in USA populations. Populations in Brazil, Argentina and Uruguay were only weakly differentiated (pairwise FST ≤0.043) in comparison to USA populations (mean pairwise FST =0.161, range =0.068-0.258), suggesting a single major invasion event. However, elevated EPSPS copy number and the EPSPS replicon were identified in all populations from Brazil and Uruguay, but only in a single Argentinean population. These observations are consistent with independent in situ evolution of glyphosate resistance in Argentina, followed by some limited recent migration of the eccDNA-based mechanism from Brazil to Argentina. Taken together, our results are consistent with an initial introduction of A. palmeri into South America sometime before the 1980s, and local evolution of GR in Argentina, followed by a secondary invasion of GR A. palmeri with the unique eccDNA-based mechanism from the USA into Brazil and Uruguay during the 2010s.
Assuntos
Resistência a Herbicidas , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Brasil , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , GlifosatoRESUMO
Genetic studies increasingly rely on high-throughput phenotyping, but the resulting longitudinal data pose analytical challenges. We used canopy height data from an automated field phenotyping platform to compare several approaches to scanning for quantitative trait loci (QTLs) and performing genomic prediction in a wheat recombinant inbred line mapping population based on up to 26 sampled time points (TPs). We detected four persistent QTLs (i.e. expressed for most of the growing season), with both empirical and simulation analyses demonstrating superior statistical power of detecting such QTLs through functional mapping approaches compared with conventional individual TP analyses. In contrast, even very simple individual TP approaches (e.g. interval mapping) had superior detection power for transient QTLs (i.e. expressed during very short periods). Using spline-smoothed phenotypic data resulted in improved genomic predictive abilities (5-8% higher than individual TP prediction), while the effect of including significant QTLs in prediction models was relatively minor (<1-4% improvement). Finally, although QTL detection power and predictive ability generally increased with the number of TPs analysed, gains beyond five or 10 TPs chosen based on phenological information had little practical significance. These results will inform the development of an integrated, semi-automated analytical pipeline, which will be more broadly applicable to similar data sets in wheat and other crops.
Assuntos
Procedimentos Cirúrgicos Robóticos , Triticum , Mapeamento Cromossômico , Genômica , Humanos , Fenótipo , Triticum/genéticaRESUMO
BACKGROUND: Miscanthus has potential as a biomass crop but the development of varieties that are consistently superior to the natural hybrid M. × giganteus has been challenging, presumably because of strong G × E interactions and poor knowledge of the complex genetic architectures of traits underlying biomass productivity and climatic adaptation. While linkage and association mapping studies are starting to generate long lists of candidate regions and even individual genes, it seems unlikely that this information can be translated into effective marker-assisted selection for the needs of breeding programmes. Genomic selection has emerged as a viable alternative, and prediction accuracies are moderate across a range of phenological and morphometric traits in Miscanthus, though relatively low for biomass yield per se. METHODS: We have previously proposed a combination of index selection and genomic prediction as a way of overcoming the limitations imposed by the inherent complexity of biomass yield. Here we extend this approach and illustrate its potential to achieve multiple breeding targets simultaneously, in the absence of a priori knowledge about their relative economic importance, while also monitoring correlated selection responses for non-target traits. We evaluate two hypothetical scenarios of increasing biomass yield by 20 % within a single round of selection. In the first scenario, this is achieved in combination with delaying flowering by 44 d (roughly 20 %), whereas, in the second, increased yield is targeted jointly with reduced lignin (-5 %) and increased cellulose (+5 %) content, relative to current average levels in the breeding population. KEY RESULTS: In both scenarios, the objectives were achieved efficiently (selection intensities corresponding to keeping the best 20 and 4 % of genotypes, respectively). However, the outcomes were strikingly different in terms of correlated responses, and the relative economic values (i.e. value per unit of change in each trait compared with that for biomass yield) of secondary traits included in selection indices varied considerably. CONCLUSIONS: Although these calculations rely on multiple assumptions, they highlight the need to evaluate breeding objectives and explicitly consider correlated responses in silico, prior to committing extensive resources. The proposed approach is broadly applicable for this purpose and can readily incorporate high-throughput phenotyping data as part of integrated breeding platforms.
Assuntos
Cruzamento , Genômica , Genótipo , Fenótipo , Poaceae , Seleção GenéticaRESUMO
Miscanthus has potential as a bioenergy crop but the rapid development of high-yielding varieties is challenging. Previous studies have suggested that phenology and canopy height are important determinants of biomass yield. Furthermore, while genome-wide prediction was effective for a broad range of traits, the predictive ability for yield was very low. We therefore developed models clarifying the genetic associations between spring emergence, consequent canopy phenology and dry biomass yield. The timing of emergence was a moderately strong predictor of early-season elongation growth (genetic correlation >0.5), but less so for growth later in the season and for the final yield (genetic correlation <0.1). In contrast, early-season canopy height was consistently more informative than emergence for predicting biomass yield across datasets for two species in Miscanthus and two growing seasons. We used the associations uncovered through these models to develop selection indices that are expected to increase the response to selection for yield by as much as 21% and improve the performance of genome-wide prediction by an order of magnitude. This multivariate approach could have an immediate impact in operational breeding programmes, as well as enable the integration of crop growth models and genome-wide prediction.
Assuntos
Genoma de Planta/genética , Genômica , Modelos Estatísticos , Poaceae/genética , Agricultura , Biocombustíveis , Biomassa , Cruzamento , Genótipo , Fenótipo , Poaceae/crescimento & desenvolvimento , Estações do AnoRESUMO
BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.
Assuntos
Parede Celular/genética , Genes de Plantas , Populus/genética , Alelos , Sequência de Bases , Celulose/metabolismo , Mapeamento Cromossômico , Ligação Genética , Genótipo , Lignina/biossíntese , Escore Lod , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genéticaRESUMO
Comparative analysis of multiple angiosperm genomes has implicated gene duplication in the expansion and diversification of many gene families. However, empirical data and theory suggest that whole-genome and small-scale duplication events differ with respect to the types of genes preserved as duplicate pairs. We compared gene duplicates resulting from a recent whole genome duplication to a set of tandemly duplicated genes in the model forest tree Populus trichocarpa. We used a combination of microarray expression analyses of a diverse set of tissues and functional annotation to assess factors related to the preservation of duplicate genes of both types. Whole genome duplicates are 700 bp longer and are expressed in 20% more tissues than tandem duplicates. Furthermore, certain functional categories are over-represented in each class of duplicates. In particular, disease resistance genes and receptor-like kinases commonly occur in tandem but are significantly under-retained following whole genome duplication, while whole genome duplicate pairs are enriched for members of signal transduction cascades and transcription factors. The shape of the distribution of expression divergence for duplicated pairs suggests that nearly half of the whole genome duplicates have diverged in expression by a random degeneration process. The remaining pairs have more conserved gene expression than expected by chance, consistent with a role for selection under the constraints of gene balance. We hypothesize that duplicate gene preservation in Populus is driven by a combination of subfunctionalization of duplicate pairs and purifying selection favoring retention of genes encoding proteins with large numbers of interactions.
Assuntos
Evolução Molecular , Duplicação Gênica/fisiologia , Genoma de Planta/fisiologia , Modelos Genéticos , Populus/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: One of the most economically important areas within the Welsh agricultural sector is sheep farming, contributing around £230 million to the UK economy annually. Phenotypic selection over several centuries has generated a number of native sheep breeds, which are presumably adapted to the diverse and challenging landscape of Wales. Little is known about the history, genetic diversity and relationships of these breeds with other European breeds. We genotyped 353 individuals from 18 native Welsh sheep breeds using the Illumina OvineSNP50 array and characterised the genetic structure of these breeds. Our genotyping data were then combined with, and compared to, those from a set of 74 worldwide breeds, previously collected during the International Sheep Genome Consortium HapMap project. RESULTS: Model based clustering of the Welsh and European breeds indicated shared ancestry. This finding was supported by multidimensional scaling analysis (MDS), which revealed separation of the European, African and Asian breeds. As expected, the commercial Texel and Merino breeds appeared to have extensive co-ancestry with most European breeds. Consistently high levels of haplotype sharing were observed between native Welsh and other European breeds. The Welsh breeds did not, however, form a genetically homogeneous group, with pairwise F ST between breeds averaging 0.107 and ranging between 0.020 and 0.201. Four subpopulations were identified within the 18 native breeds, with high homogeneity observed amongst the majority of mountain breeds. Recent effective population sizes estimated from linkage disequilibrium ranged from 88 to 825. CONCLUSIONS: Welsh breeds are highly diverse with low to moderate effective population sizes and form at least four distinct genetic groups. Our data suggest common ancestry between the native Welsh and European breeds. These findings provide the basis for future genome-wide association studies and a first step towards developing genomics assisted breeding strategies in the UK.
Assuntos
Cruzamento , Genética Populacional , Genoma , Técnicas de Genotipagem , Ovinos/genética , Animais , Análise por Conglomerados , Genômica , Haplótipos , Endogamia , Desequilíbrio de Ligação , Filogenia , Polimorfismo de Nucleotídeo Único , Ovinos/classificaçãoRESUMO
⢠Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. ⢠We generated over 100,000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. ⢠Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10,000-20,000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. ⢠Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible.
Assuntos
Biomassa , Parede Celular/metabolismo , Estudo de Associação Genômica Ampla , Poaceae/citologia , Poaceae/genética , Característica Quantitativa Herdável , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta/genética , Genótipo , Geografia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Análise de Componente Principal , Mapeamento por Restrição , Análise de Sequência de DNARESUMO
Miscanthus is a promising crop for bioenergy and biorefining in Europe. The improvement of Miscanthus as a crop relies on the creation of new varieties through the hybridization of germplasm collected in the wild with genetic variation and suitable characteristics in terms of resilience, yield and quality of the biomass. Local adaptation has likely shaped genetic variation for these characteristics and is therefore important to quantify. A key biomass quality parameter for biorefining is the ease of conversion of cell wall polysaccharides to monomeric sugars. Thus far, the variability of cell wall related traits in Miscanthus has mostly been explored in accessions from limited genetic backgrounds. Here we analysed the soil and climatic conditions of the original collection sites of 592 Miscanthus genotypes, which form eight distinct genetic groups based on discriminant analysis of principal components of 25,014 single-nucleotide polymorphisms. Our results show that species of the genus Miscanthus grow naturally across a range of soil and climate conditions. Based on a detailed analysis of 49 representative genotypes, we report generally minor differences in cell wall characteristics between different genetic groups and high levels of genetic variation within groups, with less investigated species like M. floridulus showing lower recalcitrance compared to the other genetic groups. The results emphasize that both inter- and intra- specific variation in cell wall characteristics and biomass recalcitrance can be used effectively in Miscanthus breeding programmes, while also reinforcing the importance of considering biomass yield when quantifying overall conversion efficiency. Thus, in addition to reflecting the complexity of the interactions between compositional and structural cell wall features and cell wall recalcitrance to sugar release, our results point to traits that could potentially require attention in breeding programmes targeted at improving the Miscanthus biomass crop.
RESUMO
Gene flow is a primary determinant of potential ecological impacts of transgenic trees. However, gene flow is a complex process that must be assessed in the context of realistic genetic, management, and environmental conditions. We measured gene flow from hybrid poplar plantations using morphological and genetic markers, and developed a spatially explicit landscape model to simulate pollination, dispersal, establishment, and mortality in the context of historical and projected disturbance and land-use regimes. Most pollination and seed establishment occurred within 450 m of the source, with a very long tail. Modeled transgene flow was highly context-dependent, strongly influenced by the competitive effects of transgenes, transgenic fertility, plantation rotation length, disturbance regime, and spatial and temporal variation in selection. The use of linked infertility genes even if imperfect, substantially reduced transgene flow in a wide range of modeled scenarios. The significance of seed and vegetative dispersal was highly dependent on plantation size. Our empirical and modeling studies suggest that transgene spread can be spatially extensive. However, the amount of spread is highly dependent on ecological and management context, and can be greatly limited or prevented by management or mitigation genes such as those that cause sexual infertility.
Assuntos
Fluxo Gênico , Modelos Biológicos , Plantas Geneticamente Modificadas/genética , Populus/genética , Dispersão de Sementes/genética , Noroeste dos Estados Unidos , Polinização , Transgenes , Árvores/genéticaRESUMO
⢠Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. ⢠We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29,213 single-nucleotide polymorphisms. ⢠Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r(2) dropping below 0.2 within 3-6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N(e) ≈ 4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. ⢠Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.
Assuntos
Genoma de Planta , Genômica/métodos , Desequilíbrio de Ligação , Populus/genética , Metilação de DNA , DNA de Plantas/genética , Evolução Molecular , Frequência do Gene , Estudos de Associação Genética/métodos , Deriva Genética , Técnicas de Genotipagem , Geografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Recombinação Genética , Seleção Genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodosRESUMO
BACKGROUND: Alopecurus myosuroides (blackgrass) is a major weed in Europe with known resistance to multiple herbicide modes of action. In the UK, there is evidence that blackgrass has undergone a range expansion. In this paper, genotyping-by-sequencing and population-level herbicide resistance phenotypes are used to explore spatial patterns of selectively neutral genetic variation and resistance. We also perform a preliminary genome-wide association study (GWAS) and genomic prediction analysis to evaluate the potential of these approaches for investigating nontarget site herbicide resistance. RESULTS: Blackgrass was collected from 47 fields across the British Isles and up to eight plants per field population (n = 369) were genotyped by Restriction site-associated DNA (RAD)-sequencing. A total of 20 426 polymorphic loci were identified and used for population genetic analyses. Phenotypic assays revealed significant variation in herbicide resistance between populations. Population structure was weak (FST = 0.024-0.048), but spatial patterns were consistent with an ongoing westward and northward range expansion. We detected strong and consistent Wahlund effects (FIS = 0.30). There were no spatial patterns of herbicide resistance or evidence for confounding with population structure. Using a combination of population-level GWAS and genomic prediction we found that the top 20, 200, and 2000 GWAS loci had higher predictive abilities for fenoxaprop resistance compared to all markers. CONCLUSION: There is likely extensive human-mediated gene flow between field populations of the weed blackgrass at a national scale. The lack of confounding of adaptive and neutral genetic variation can enable future, more extensive GWAS analyses to identify the genetic architecture of evolved herbicide resistance. © 2020 Society of Chemical Industry.
Assuntos
Resistência a Herbicidas , Herbicidas , Europa (Continente) , Estruturas Genéticas , Estudo de Associação Genômica Ampla , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Humanos , Metagenômica , Poaceae/genética , Reino UnidoRESUMO
Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.
RESUMO
Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes.
Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Sintenia/genética , Jacarés e Crocodilos/genética , Animais , Aves/genética , Mapeamento Cromossômico , Cromossomos/genética , Répteis/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de SequênciaRESUMO
Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation.
Assuntos
Adaptação Fisiológica/genética , Genômica/métodos , Populus/genética , Seleção Genética , Colúmbia Britânica , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Variação Genética , Genética Populacional , Genoma de Planta/genética , Genótipo , Geografia , Desequilíbrio de Ligação , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Populus/classificação , WashingtonRESUMO
The conservation of unique populations of animals is critical in order to preserve valuable genetic diversity and, where populations are free-living, maintain their irreplaceable influence upon habitat ecology. An accurate assessment of genetic diversity and structure within and between populations is crucial in order to design and implement conservation strategies in natural and domesticated species. Moreover, where it is possible to identify relic populations that are related to a structured breed an ideal opportunity presents itself to model processes that reveal historical factors that have shaped genetic diversity. The origins of native UK mountain and moorland ponies are uncertain, but they may have directly descended from prehistoric populations and potentially harbour specific adaptations to the uplands of Britain and Ireland. To date, there have been no studies of population structure and genetic diversity present within a free-living group of ponies in the Carneddau mountain range of North Wales. Herein, we describe the use of microsatellites and SNPs together with analysis of the mitochondrial control region to quantify the extent and magnitude of genetic diversity present in the feral Carneddau pony and relate this to several recognised British and Irish pony breeds. Our results establish that the feral Carneddau ponies represent a unique and distinctive population that merits recognition as a defined population and conservation priority. We discuss the implications for conservation of this population as a unique pool of genetic diversity adapted to the British uplands and potentially of particular value in maintaining the biodiversity of these habitats.
RESUMO
Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio ≥ 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on the two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.