RESUMO
The physiological process of exercise-induced angiogenesis involves the orchestrated upregulation of angiogenic factors together with repression of angiostatic factors. The Forkhead Box 'O' (FoxO) transcription factors promote an angiostatic environment in pathological contexts. We hypothesized that endothelial FoxO1 and FoxO3a also play an integral role in restricting the angiogenic response to aerobic exercise training. A single exercise bout significantly increased levels of FoxO1 and FoxO3a mRNA (5.5- and 1.7-fold, respectively) and protein (1.7- and 2.2-fold, respectively) within the muscles of mice 2 h post-exercise compared to sedentary. Training abolished the exercise-induced increases in both FoxO1 and FoxO3a mRNA and proteins, and resulted in significantly lower nuclear levels of FoxO1 and FoxO3a protein (0.5- and 0.4-fold, respectively, relative to sedentary). Thrombospondin 1 (THBS1) protein level closely mirrored the expression pattern of FoxO proteins. The 1.7-fold increase in THBS1 protein following acute exercise no longer occurred after 10 days of repeated exercise. Endothelial cell-directed conditional deletion of FoxO1/3a/4 in mice prevented the increase in THBS1 mRNA following a single exercise bout. Mice harbouring the endothelial FoxO deletion also demonstrated a significant 20% increase in capillary to muscle fibre ratio after only 7 days of training while 14 days of training was required to elicit a similar increase in wildtype littermates. Our results demonstrate that the downregulation of FoxO1 and FoxO3a proteins facilitates angiogenesis in response to repeated exercise. In conclusion, FoxO proteins can delay exercise-induced angiogenesis, and thus are critical regulators of the physiological angiogenic response in skeletal muscle.
Assuntos
Fatores de Transcrição Forkhead/metabolismo , Neovascularização Fisiológica , Esforço Físico , Animais , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Feminino , Fatores de Transcrição Forkhead/genética , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismoRESUMO
Peripheral artery disease (PAD) is characterized by chronic muscle ischemia. Compensatory angiogenesis is minimal within ischemic muscle despite an increase in angiogenic factors. This may occur due to the prevalence of angiostatic factors. Regulatory mechanisms that could evoke an angiostatic environment during ischemia are largely unknown. Forkhead box O (FoxO) transcription factors, known to repress endothelial cell proliferation in vitro, are potential candidates. Our goal was to determine whether FoxO proteins promote an angiostatic phenotype within ischemic muscle. FoxO1 and the angiostatic matrix protein thrombospondin 1 (THBS1) were elevated in ischemic muscle from PAD patients, or from mice post-femoral artery ligation. Mice with conditional endothelial cell-directed deletion of FoxO proteins (Mx1Cre (+), FoxO1,3,4 (L/L) , referred to as FoxOΔ) were used to assess the role of endothelial FoxO proteins within ischemic tissue. FoxO deletion abrogated the elevation of FoxO1 and THBS1 proteins, enhanced hindlimb blood flow recovery and improved neovascularization in murine ischemic muscle. Endothelial cell outgrowth from 3D explant cultures was more robust in muscles derived from FoxOΔ mice. FoxO1 overexpression induced THBS1 production, and a direct interaction of endogenous FoxO1 with the THBS1 promoter was detectable in primary endothelial cells. We provide evidence that FoxO1 directly regulates THBS1 within ischemic muscle. Altogether, these findings bring novel insight into the regulatory mechanisms underlying the repression of angiogenesis within peripheral ischemic tissues.
Assuntos
Endotélio Vascular/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Isquemia/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Doença Arterial Periférica/metabolismo , Trombospondina 1/biossíntese , Idoso , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Artéria Femoral , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/deficiência , Deleção de Genes , Regulação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/etiologia , Isquemia/genética , Ligadura , Camundongos , Pessoa de Meia-Idade , Doença Arterial Periférica/complicações , Doença Arterial Periférica/fisiopatologia , Fatores de Risco , Organismos Livres de Patógenos Específicos , Trombospondina 1/genética , Regulação para CimaRESUMO
Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle.
Assuntos
Angiotensina II/farmacologia , Células Endoteliais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Angiotensinogênio/metabolismo , Animais , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Losartan/farmacologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Microvasos/citologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
High expression levels of human double minute-2 (Hdm2) are often associated with increased risk of cancer. Hdm2 is well established as an oncoprotein exerting various tumorigenic effects. Conversely, the physiological functions of Hdm2 in nontumor cells and healthy tissues remain largely unknown. We previously demonstrated that exercise training stimulates expression of murine double minute-2 (Mdm2), the murine analog of Hdm2, in rodent skeletal muscle and Mdm2 was required for exercise-induced muscle angiogenesis. Here we showed that exercise training stimulated the expression of Hdm2 protein in human skeletal muscle from +38% to +81%. This robust physiological response was observed in 60-70% of the subjects tested, in both young and senior populations. Similarly, exercise training stimulated the expression of platelet endothelial cell adhesion molecule-1, an indicator of the level of muscle capillarization. Interestingly, a concomitant decrease in the tumor suppressor forkhead box O-1 (FoxO1) transcription factor levels did not occur with training although Mdm2/Hdm2 is known to inhibit FoxO1 expression in diseased skeletal muscle. This could suggest that Hdm2 has different targets when stimulated in a physiological context and that exercise training could be considered therapeutically in the context of cancer in combination with anti-Hdm2 drug therapies in order to preserve Hdm2 physiological functions in healthy tissues.