Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant J ; 108(3): 859-869, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390289

RESUMO

Single-cell genomics provides unprecedented potential for research on plant development and environmental responses. Here, we introduce a generic procedure for plant nucleus isolation combined with nanowell-based library preparation. Our method enables the transcriptome analysis of thousands of individual plant nuclei. It serves as an alternative to the use of protoplast isolation, which is currently a standard methodology for plant single-cell genomics, although it can be challenging for some plant tissues. We show the applicability of our nucleus isolation method by using different plant materials from different species. The potential of our single-nucleus RNA sequencing method is shown through the characterization of transcriptomes of seedlings and developing flowers from Arabidopsis thaliana. We evaluated the transcriptome dynamics during the early stages of anther development, identified stage-specific activities of transcription factors regulating this process, and predicted potential target genes of these transcription factors. Our nucleus isolation procedure can be applied in different plant species and tissues, thus expanding the toolkit for plant single-cell genomics experiments.


Assuntos
Arabidopsis/genética , Flores/genética , Análise de Sequência de RNA/instrumentação , Análise de Sequência de RNA/métodos , Núcleo Celular/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Inflorescência/genética , RNA de Plantas , RNA Nuclear Pequeno , Reprodutibilidade dos Testes , Plântula/genética
2.
Plant Cell ; 31(5): 1141-1154, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30914470

RESUMO

Spatial organization of chromatin contributes to gene regulation of many cellular processes and includes a connection of chromatin with the nuclear lamina (NL). The NL is a protein mesh that resides underneath the inner nuclear membrane and consists of lamins and lamina-associated proteins. Chromatin regions associated with lamins in animals are characterized mostly by constitutive heterochromatin, but association with facultative heterochromatin mediated by Polycomb-group (PcG) proteins has been reported as well. In contrast with animals, plant NL components are largely not conserved and NL association with chromatin is poorly explored. Here, we present the connection between the lamin-like protein, CROWDED NUCLEI1 (CRWN1), and the chromatin- and PcG-associated component, PROLINE-TRYPTOPHANE-TRYPTOPHANE-PROLINE INTERACTOR OF POLYCOMBS1, in Arabidopsis (Arabidopsis thaliana). We show that PWO1 and CRWN1 proteins associate physically with each other, act in the same pathway to maintain nuclear morphology, and control expression of a similar set of target genes. Moreover, we demonstrate that transiently expressed PWO1 proteins form foci located partially at the subnuclear periphery. Ultimately, as CRWN1 and PWO1 are plant-specific, our results argue that plants might have developed an equivalent, rather than homologous, mechanism of linking chromatin repression and NL.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Tamanho do Núcleo Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas Nucleares/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Núcleo Celular/ultraestrutura , Cromatina/genética , Heterocromatina/genética , Laminas/metabolismo , Lâmina Nuclear/ultraestrutura , Proteínas Nucleares/genética , Fenótipo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
3.
J Exp Bot ; 72(12): 4202-4217, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33865238

RESUMO

Multicellular organisms display a fascinating complexity of cellular identities and patterns of diversification. The concept of 'cell type' aims to describe and categorize this complexity. In this review, we discuss the traditional concept of cell types and highlight the impact of single-cell technologies and spatial omics on the understanding of cellular differentiation in plants. We summarize and compare position-based and lineage-based mechanisms of cell identity specification using flower development as a model system. More than understanding ontogenetic origins of differentiated cells, an important question in plant science is to understand their position- and developmental stage-specific heterogeneity. Combinatorial action and crosstalk of external and internal signals is the key to cellular heterogeneity, often converging on transcription factors that orchestrate gene expression programs.


Assuntos
Regulação da Expressão Gênica de Plantas , Plantas , Diferenciação Celular , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Cell ; 29(8): 1822-1835, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28733422

RESUMO

Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation.


Assuntos
DNA de Plantas/metabolismo , Flores/genética , Genes de Plantas , Proteínas de Homeodomínio/genética , Complexos Multiproteicos/metabolismo , Especificidade de Órgãos/genética , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/genética , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/metabolismo
5.
Nature ; 495(7440): 246-50, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23467094

RESUMO

Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world's most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.


Assuntos
Agricultura , Alelos , Variação Genética/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Aclimatação , Arabidopsis , Cromossomos de Plantas/genética , Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos da radiação , Europa (Continente) , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Luz , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/efeitos da radiação , Solanum tuberosum/efeitos da radiação , América do Sul , Fatores de Tempo
6.
Nucleic Acids Res ; 42(4): 2138-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275492

RESUMO

Plant MADS-domain transcription factors act as key regulators of many developmental processes. Despite the wealth of information that exists about these factors, the mechanisms by which they recognize their cognate DNA-binding site, called CArG-box (consensus CCW6GG), and how different MADS-domain proteins achieve DNA-binding specificity, are still largely unknown. We used information from in vivo ChIP-seq experiments, in vitro DNA-binding data and evolutionary conservation to address these important questions. We found that structural characteristics of the DNA play an important role in the DNA binding of plant MADS-domain proteins. The central region of the CArG-box largely resembles a structural motif called 'A-tract', which is characterized by a narrow minor groove and may assist bending of the DNA by MADS-domain proteins. Periodically spaced A-tracts outside the CArG-box suggest additional roles for this structure in the process of DNA binding of these transcription factors. Structural characteristics of the CArG-box not only play an important role in DNA-binding site recognition of MADS-domain proteins, but also partly explain differences in DNA-binding specificity of different members of this transcription factor family and their heteromeric complexes.


Assuntos
DNA de Plantas/química , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Consenso , DNA de Plantas/metabolismo , Proteínas de Homeodomínio/metabolismo , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição/metabolismo
7.
Plant J ; 79(3): 413-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888433

RESUMO

The growth-regulating factors (GRFs) are plant-specific transcription factors. They form complexes with GRF-interacting factors (GIFs), a small family of transcriptional co-activators. In Arabidopsis thaliana, seven out of the nine GRFs are controlled by microRNA miR396. Analysis of Arabidopsis plants carrying a GRF3 allele insensitive to miR396 revealed a strong boost in the number of cells in leaves, which was further enhanced synergistically by an additional increase of GIF1 levels. Genetic experiments revealed that GRF3 can still increase cell number in gif1 mutants, albeit to a much lesser extent. Genome-wide transcript profiling indicated that the simultaneous increase of GRF3 and GIF1 levels causes additional effects in gene expression compared to either of the transgenes alone. We observed that GIF1 interacts in vivo with GRF3, as well as with chromatin-remodeling complexes, providing a mechanistic explanation for the synergistic activities of a GRF3-GIF1 complex. Interestingly, we found that, in addition to the leaf size, the GRF system also affects the organ longevity. Genetic and molecular analysis revealed that the functions of GRFs in leaf growth and senescence can be uncoupled, demonstrating that the miR396-GRF-GIF network impinges on different stages of leaf development. Our results integrate the post-transcriptional control of the GRF transcription factors with the progression of leaf development.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Folhas de Planta/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis , Senescência Celular/genética , Senescência Celular/fisiologia , Ligação Proteica , Fatores de Transcrição/genética
8.
Development ; 139(17): 3081-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872082

RESUMO

Members of the MADS-box transcription factor family play essential roles in almost every developmental process in plants. Many MADS-box genes have conserved functions across the flowering plants, but some have acquired novel functions in specific species during evolution. The analyses of MADS-domain protein interactions and target genes have provided new insights into their molecular functions. Here, we review recent findings on MADS-box gene functions in Arabidopsis and discuss the evolutionary history and functional diversification of this gene family in plants. We also discuss possible mechanisms of action of MADS-domain proteins based on their interactions with chromatin-associated factors and other transcriptional regulators.


Assuntos
Arabidopsis/genética , Evolução Molecular , Variação Genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Morfogênese/genética , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Domínio MADS/classificação , Modelos Biológicos , Estruturas Vegetais/crescimento & desenvolvimento , Especificidade da Espécie
9.
Proc Natl Acad Sci U S A ; 109(5): 1560-5, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22238427

RESUMO

Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the "floral quartet" model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores , Proteínas de Domínio MADS/metabolismo , Arabidopsis/metabolismo , Cromatografia de Afinidade , Espectrometria de Massas
10.
Plant Cell ; 23(10): 3853-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22039214

RESUMO

Legume GRAS (GAI, RGA, SCR)-type transcription factors NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 are essential for rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression after symbiotic signaling. However, legume NSP1 and NSP2 can be functionally replaced by nonlegume orthologs, including rice (Oryza sativa) NSP1 and NSP2, indicating that both proteins are functionally conserved in higher plants. Here, we show that NSP1 and NSP2 are indispensable for strigolactone (SL) biosynthesis in the legume Medicago truncatula and in rice. Mutant nsp1 plants do not produce SLs, whereas in M. truncatula, NSP2 is essential for conversion of orobanchol into didehydro-orobanchol, which is the main SL produced by this species. The disturbed SL biosynthesis in nsp1 nsp2 mutant backgrounds correlates with reduced expression of DWARF27, a gene essential for SL biosynthesis. Rice and M. truncatula represent distinct phylogenetic lineages that split approximately 150 million years ago. Therefore, we conclude that regulation of SL biosynthesis by NSP1 and NSP2 is an ancestral function conserved in higher plants. NSP1 and NSP2 are single-copy genes in legumes, which implies that both proteins fulfill dual regulatory functions to control downstream targets after rhizobium-induced signaling as well as SL biosynthesis in nonsymbiotic conditions.


Assuntos
Lactonas/metabolismo , Medicago truncatula/fisiologia , Oryza/fisiologia , Sinorhizobium meliloti/fisiologia , Simbiose , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Carotenoides/análise , Carotenoides/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lactonas/análise , Lactonas/química , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Sesquiterpenos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
11.
Proc Natl Acad Sci U S A ; 107(22): 10296-301, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479230

RESUMO

Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucine-zipper (bZIP) transcription factor gene family, bZIP19 and bZIP23, that regulate the adaptation to low zinc supply. They were identified, in a yeast-one-hybrid screening, to associate to promoter regions of the zinc deficiency-induced ZIP4 gene of the Zrt- and Irt-related protein (ZIP) family of metal transporters. Although mutation of only one of the bZIP genes hardly affects plants, we show that the bzip19 bzip23 double mutant is hypersensitive to zinc deficiency. Unlike the wild type, the bzip19 bzip23 mutant is unable to induce the expression of a small set of genes that constitutes the primary response to zinc deficiency, comprising additional ZIP metal transporter genes. This set of target genes is characterized by the presence of one or more copies of a 10-bp imperfect palindrome in their promoter region, to which both bZIP proteins can bind. The bZIP19 and bZIP23 transcription factors, their target genes, and the characteristic cis zinc deficiency response elements they can bind to are conserved in higher plants. These findings are a significant step forward to unravel the molecular mechanism of zinc homeostasis in plants, allowing the improvement of zinc bio-fortification to alleviate human nutrition problems and phytoremediation strategies to clean contaminated soils.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Zinco/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sequência Conservada , DNA de Plantas/genética , Genes de Plantas , Teste de Complementação Genética , Humanos , Mutagênese Insercional , Mutação , Fenótipo , Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Técnicas do Sistema de Duplo-Híbrido
12.
Methods Mol Biol ; 2698: 163-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682475

RESUMO

Transcription factors that act within a gene regulatory network (GRN) often interact with other proteins such as chromatin remodeling factors, histone modifiers, and other co-regulators. Characterizing these interactions is crucial for understanding the function and mechanism of action of a transcription factor. Here, a method for the identification of protein-protein interactions of nuclear-localized, transcription-associated factors is described. The method is based on the immunoprecipitation (IP) of a fluorophore-tagged target, followed by mass spectrometry (MS), peptide identification, and quantification of interacting proteins. By applying label-free quantification to IPs and their input protein extracts, statistically controlled protein enrichment ratios uncover high-confidence interaction partners of the target. A complete step-by-step procedure, including sample preparation, MS settings, data analysis, and visualization is provided.


Assuntos
Proteínas Nucleares , Proteínas de Plantas , Proteínas de Plantas/genética , Histonas , Fatores de Transcrição , Imunoprecipitação , Espectrometria de Massas
13.
Methods Mol Biol ; 2698: 147-161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682474

RESUMO

Here we provide an updated protocol for the Systematic Evolution of Ligands followed by massively parallel sequencing (SELEX-seq) method to study protein-DNA interaction specificities. This in vitro method is used to characterize DNA-binding specificities of transcription factors (TFs). The procedure is based on cycles of immunoprecipitation of protein-DNA complexes, starting with a randomized DNA library of defined fragment length, followed by massively parallel sequencing. The updated protocol includes aspects of experimental design and procedure as well as basic instructions on data analysis.


Assuntos
Análise de Dados , Fatores de Transcrição , Fatores de Transcrição/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação
14.
Nat Plants ; 9(3): 473-485, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797351

RESUMO

How transcription factors attain their target gene specificity and how this specificity may be modulated, acquiring different regulatory functions through the development of plant tissues, is an open question. Here we characterized different regulatory roles of the MADS-domain transcription factor FRUITFULL (FUL) in flower development and mechanisms modulating its activity. We found that the dual role of FUL in regulating floral transition and pistil development is associated with its different in vivo patterns of DNA binding in both tissues. Characterization of FUL protein complexes by liquid chromatography-tandem mass spectrometry and SELEX-seq experiments shows that aspects of tissue-specific target site selection can be predicted by tissue-specific variation in the composition of FUL protein complexes with different DNA binding specificities, without considering the chromatin status of the target region. This suggests a role for dynamic changes in FUL TF complex composition in reshaping the regulatory functions of FUL during flower development.


Assuntos
Proteínas de Domínio MADS , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Flores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas
15.
PLoS Biol ; 7(4): e1000090, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19385720

RESUMO

The molecular mechanisms by which floral homeotic genes act as major developmental switches to specify the identity of floral organs are still largely unknown. Floral homeotic genes encode transcription factors of the MADS-box family, which are supposed to assemble in a combinatorial fashion into organ-specific multimeric protein complexes. Major mediators of protein interactions are MADS-domain proteins of the SEPALLATA subfamily, which play a crucial role in the development of all types of floral organs. In order to characterize the roles of the SEPALLATA3 transcription factor complexes at the molecular level, we analyzed genome-wide the direct targets of SEPALLATA3. We used chromatin immunoprecipitation followed by ultrahigh-throughput sequencing or hybridization to whole-genome tiling arrays to obtain genome-wide DNA-binding patterns of SEPALLATA3. The results demonstrate that SEPALLATA3 binds to thousands of sites in the genome. Most potential target sites that were strongly bound in wild-type inflorescences are also bound in the floral homeotic agamous mutant, which displays only the perianth organs, sepals, and petals. Characterization of the target genes shows that SEPALLATA3 integrates and modulates different growth-related and hormonal pathways in a combinatorial fashion with other MADS-box proteins and possibly with non-MADS transcription factors. In particular, the results suggest multiple links between SEPALLATA3 and auxin signaling pathways. Our gene expression analyses link the genomic binding site data with the phenotype of plants expressing a dominant repressor version of SEPALLATA3, suggesting that it modulates auxin response to facilitate floral organ outgrowth and morphogenesis. Furthermore, the binding of the SEPALLATA3 protein to cis-regulatory elements of other MADS-box genes and expression analyses reveal that this protein is a key component in the regulatory transcriptional network underlying the formation of floral organs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Transdução de Sinais , Fatores de Transcrição/metabolismo
16.
Nat Commun ; 13(1): 2838, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595749

RESUMO

Cellular heterogeneity in growth and differentiation results in organ patterning. Single-cell transcriptomics allows characterization of gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during this methodology. To recover the original location of cells in the developing organ is essential to link gene activity with cellular identity and function in plants. Here, we propose a method to reconstruct genome-wide gene expression patterns of individual cells in a 3D flower meristem by combining single-nuclei RNA-seq with microcopy-based 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the method is used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com .


Assuntos
Regulação da Expressão Gênica de Plantas , Meristema , Flores , Expressão Gênica , Proteínas de Plantas/genética , RNA , Análise de Sequência de RNA
17.
Proteomics ; 11(4): 744-55, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21241020

RESUMO

Mass spectrometry-based proteomics is used to gain insight into the abundance and subcellular localization of cellular signaling components, the composition of molecular complexes and the regulation of signaling pathways. Multicellular organisms have evolved signaling networks and fast responses to stimuli that can be discovered and monitored by the use of advanced proteomics techniques in combination with traditional functional analysis. Plants are multicellular organisms and products of tightly regulated developmental programmes that respond to environmental conditions and internal cues. Plant development is orchestrated by inter- and intracellular signaling molecules, receptors and transcriptional regulators, which act in a temporal and spatially coordinated manner. Here we review recent advances in proteomics applications used to understand complex cellular signaling processes in plants.


Assuntos
Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/análise , Plantas/metabolismo , Proteômica , Transdução de Sinais , Espectrometria de Massas , Proteínas de Plantas/metabolismo
18.
Nat Commun ; 12(1): 4760, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362909

RESUMO

The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a conserved fold with the I domain acting to stabilise the M domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters genome-wide DNA-binding specificity and dimerisation specificity. Introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant resulted in strong complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts as an integral part of the DNA-binding domain and significantly contributes to the functional identity of the MADS TF.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Homeodomínio/química , Fatores de Transcrição/química , Proteína AGAMOUS de Arabidopsis/química , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Mol Plant ; 12(6): 743-763, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447332

RESUMO

Transcription factors (TFs) are key cellular components that control gene expression. They recognize specific DNA sequences, the TF binding sites (TFBSs), and thus are targeted to specific regions of the genome where they can recruit transcriptional co-factors and/or chromatin regulators to fine-tune spatiotemporal gene regulation. Therefore, the identification of TFBSs in genomic sequences and their subsequent quantitative modeling is of crucial importance for understanding and predicting gene expression. Here, we review how TFBSs can be determined experimentally, how the TFBS models can be constructed in silico, and how they can be optimized by taking into account features such as position interdependence within TFBSs, DNA shape, and/or by introducing state-of-the-art computational algorithms such as deep learning methods. In addition, we discuss the integration of context variables into the TFBS modeling, including nucleosome positioning, chromatin states, methylation patterns, 3D genome architectures, and TF cooperative binding, in order to better predict TF binding under cellular contexts. Finally, we explore the possibilities of combining the optimized TFBS model with technological advances, such as targeted TFBS perturbation by CRISPR, to better understand gene regulation, evolution, and plant diversity.


Assuntos
Fatores de Transcrição/metabolismo , Algoritmos , Sítios de Ligação , Biologia Computacional/métodos , Flores/metabolismo , Regulação da Expressão Gênica/fisiologia , Ligação Proteica
20.
Nat Plants ; 4(9): 681-689, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104650

RESUMO

Targeted changes in chromatin state at thousands of genes are central to eukaryotic development. RELATIVE OF EARLY FLOWERING 6 (REF6) is a Jumonji-type histone demethylase that counteracts Polycomb repressive complex 2 (PRC2)-mediated gene silencing in plants and was reported to select its binding sites in a direct, sequence-specific manner1-3. Here we show that REF6 and its two close paralogues determine spatial 'boundaries' of the repressive histone H3K27me3 mark in the genome and control the tissue-specific release from PRC2-mediated gene repression. Targeted mutagenesis revealed that these histone demethylases display pleiotropic, redundant functions in plant development, several of which depend on trans factor-mediated recruitment. Thus, Jumonji-type histone demethylases restrict repressive chromatin domains and contribute to tissue-specific gene activation via complementary targeting mechanisms.


Assuntos
Arabidopsis/metabolismo , Histona Desmetilases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Filogenia , Complexo Repressor Polycomb 2 , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA