Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(16): 26289-26300, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710492

RESUMO

Light curve analysis is often used to discern information about satellites in geosynchronous orbits. Solar panels, comprising a large part of the satellite's body, contribute significantly to these light curves. Historically, theoretical bidirectional reflectance distribution functions (BRDFs) have failed to capture key features in the scattered light from solar panels. In recently published work, a new solar cell BRDF was developed by combining specular microfacet and "two-slit" diffraction terms to capture specular and periodic/array scattering, respectively. This BRDF was experimentally motivated and predicted many features of the solar cell scattered irradiance. However, the experiments that informed the BRDF were limited to a single laser wavelength, single beam size, and single solar cell sample. In addition, the BRDF was not physics based and therefore, physical insight into what causes certain features in the scattered irradiance was not evident. In this work, we examine solar cell scattering from first principles and derive a simple physics-based expression for the scattered irradiance. We analyze this expression and physically link terms to important scattering features, e.g., out-of-plane phenomena. In addition, we compare our model with experimental data and find good agreement in the locations and behaviors of these features. Our new model, being more predictive by nature, will allow for greater flexibility and accuracy when modeling reflection from solar cells in both real-world and experimental situations.

2.
Opt Express ; 29(22): 35501-35515, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808982

RESUMO

In this work, a CCD-augmented complete angle scatter instrument (CASI) with a visible red laser source was used to measure the BRDF of a commercially available solar cell designed for small satellites, simultaneously capturing both in-plane and out-of-plane data with high angular resolution surrounding the specular direction. The measurements exhibited three distinct scatter features: a central specular peak, an offset specular peak, and a diffraction pattern. The two peaks were caused by different material surfaces with slightly different normal directions, and the diffraction pattern arose from periodically-spaced metal conducting bars running in one direction across the solar cell surface. The diffraction pattern measurements were verified in-plane with an original single-pixel CASI detector and then used to inform the creation of a single closed-form BRDF model capable of describing the out-of-plane features. Both specular peaks were modeled using a traditional microfacet formulation, but the offset peak model implemented a rotation of the incident and scatter directions to account for the difference in surface normal direction. The diffraction pattern-which is not typically described with microfacet models-was described based on Fraunhofer diffraction through two rectangular stripes, adjusted in terms of microfacet coordinates. Parameters for the model were chosen manually, based largely on physical material properties when possible, rather than using optimized fitting algorithms. Model results were compared to the measurements by using the same CCD pixel scatter coordinates. Qualitatively, the model successfully replicated the observed features, and quantitatively, the modeled peak values agree with the measurements within an order of magnitude.

3.
Nature ; 442(7105): 888-91, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16929291

RESUMO

Detailed high-resolution observations of the innermost regions of nearby galaxies have revealed the presence of supermassive black holes. These black holes may interact with their host galaxies by means of 'feedback' in the form of energy and material jets; this feedback affects the evolution of the host and gives rise to observed relations between the black hole and the host. Here we report observations of the ultraviolet emissions of massive early-type galaxies. We derive an empirical relation for a critical black-hole mass (as a function of velocity dispersion) above which the outflows from these black holes suppress star formation in their hosts by heating and expelling all available cold gas. Supermassive black holes are negligible in mass compared to their hosts but nevertheless seem to play a critical role in the star formation history of galaxies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA