Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EBioMedicine ; 59: 102923, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32799124

RESUMO

BACKGROUND: PARP inhibitors are active in various tumour types beyond BRCA-mutant cancers, but their activity and molecular correlates in colorectal cancer (CRC) are not well studied. METHODS: Mutations and genome-wide mutational patterns associated with homologous recombination deficiency (HRD) were investigated in 255 primary CRCs with whole-exome sequencing and/or DNA copy number data. Efficacy of five PARP inhibitors and their molecular correlates were evaluated in 93 CRC cell lines partly annotated with mutational-, DNA copy number-, and/or gene expression profiles. Post-treatment gene expression profiling and specific protein expression analyses were performed in two pairs of PARP inhibitor sensitive and resistant cell lines. FINDINGS: A subset of microsatellite stable (MSS) CRCs had truncating mutations in homologous recombination-related genes, but these were not associated with genomic signatures of HRD. Eight CRC cell lines (9%) were sensitive to PARP inhibition, but sensitivity was not predicted by HRD-related genomic and transcriptomic signatures. In contrast, drug sensitivity in MSS cell lines was strongly associated with TP53 wild-type status (odds ratio 15.7, p = 0.023) and TP53-related expression signatures. Increased downstream TP53 activity was among the primary response mechanisms, and TP53 inhibition antagonized the effect of PARP inhibitors. Wild-type TP53-mediated suppression of RAD51 was identified as a possible mechanism of action for sensitivity to PARP inhibition. INTERPRETATION: PARP inhibitors are active in a subset of CRC cell lines and preserved TP53 function may increase the likelihood of response.


Assuntos
Neoplasias Colorretais/metabolismo , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/etiologia , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Humanos , Camundongos , Mutação , Estadiamento de Neoplasias , Prognóstico , Transcriptoma , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
2.
ESMO Open ; 5(6): e001040, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33219056

RESUMO

BACKGROUND: There is a need for improved selection of patients for adjuvant chemotherapy after resection of non-metastatic colorectal cancer (CRC). Regulator of chromosome condensation 2 (RCC2) is a potential prognostic biomarker. We report on the establishment of a robust protocol for RCC2 expression analysis and prognostic tumour biomarker evaluation in patients who did and did not receive adjuvant chemotherapy. MATERIALS AND METHODS: RCC2 was analysed in 2916 primary CRCs from the QUASAR2 randomised trial and two single-hospital Norwegian series. A new protocol using fluorescent antibody staining and digital image analysis was optimised. Biomarker value for 5-year relapse-free survival was analysed in relation to tumour stage, adjuvant chemotherapy and the molecular markers microsatellite instability, KRAS/BRAFV600E/TP53 mutations and CDX2 expression. RESULTS: Low RCC2 expression was scored in 41% of 2696 evaluable samples. Among patients with stage I-III CRC who had not received adjuvant chemotherapy, low RCC2 expression was an independent marker of inferior 5-year relapse-free survival in multivariable Cox models including clinicopathological factors and molecular markers (HR 1.45, 95% CI 1.09 to 1.94, p=0.012, N=521). RCC2 was not prognostic in patients who had received adjuvant chemotherapy, neither in QUASAR2 nor the pooled Norwegian series. The interaction between RCC2 and adjuvant chemotherapy for prediction of patient outcome was significant in stage III, and strongest among patients with microsatellite stable tumours (pinteraction=0.028). CONCLUSIONS: Low expression of RCC2 is a biomarker for poor prognosis in patients with stage I-III CRC and seems to be a predictive biomarker for effect of adjuvant chemotherapy.


Assuntos
Neoplasias Colorretais , Recidiva Local de Neoplasia , Quimioterapia Adjuvante , Proteínas Cromossômicas não Histona/uso terapêutico , Cromossomos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fatores de Troca do Nucleotídeo Guanina/uso terapêutico , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias
3.
ESMO Open ; 4(3): e000523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31321083

RESUMO

BACKGROUND: Accumulating evidence suggests immunomodulatory and context-dependent effects of TP53 mutations in cancer. We performed an exploratory analysis of the transcriptional, immunobiological and prognostic associations of TP53 mutations within the gene expression-based consensus molecular subtypes (CMSs) of colorectal cancer (CRC). MATERIALS AND METHODS: In a single-hospital series of 401 stage I-IV primary CRCs, we sequenced the whole coding region of TP53 and analysed CMS-dependent transcriptional consequences of the mutations by gene expression profiling. Immunomodulatory associations were validated by multiplex, fluorescence-based immunohistochemistry of immune cell markers. Prognostic associations of TP53 mutations were analysed in an aggregated series of 635 patients classified according to CMS, including publicly available data from a French multicentre cohort (GSE39582). RESULTS: TP53 mutations were found in 60% of the CRCs. However, gene set enrichment analyses indicated that their transcriptional consequences varied among the CMSs and were most pronounced in CMS1-immune and CMS4-mesenchymal. Subtype specificity was primarily seen as an upregulation of gene sets reflecting cell cycle progression in CMS4 and a downregulation of T cell activity in CMS1. The subtype-dependent immunomodulatory associations were reinforced by significant depletion of several immune cell populations in mutated tumours compared with wild-type (wt) tumours exclusively in CMS1, including cytotoxic lymphocytes (adjusted p value in CMS1=0.002 and CMS2-4>0.9, Microenvironment Cell Populations (MCP)-counter algorithm). This was validated by immunohistochemistry-based quantification of tumour infiltrating CD8+ cells. Within CMS1, the immunomodulatory association of TP53 mutations was strongest among microsatellite stable (MSS) tumours, and this translated into a propensity for metastatic disease and poor prognostic value of the mutations specifically in the CMS1/MSS subtype (both series overall survival: TP53 mutation vs wt: HR 5.52, p=0.028). CONCLUSIONS: Integration of TP53 mutation status with the CMS framework in primary CRC suggested subtype-dependent immunobiological associations with prognostic and potentially immunotherapeutic implications, warranting independent validation.

4.
Oncogenesis ; 8(6): 35, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092812

RESUMO

TP53 mutations are common in colorectal cancer (CRC). Most TP53 sequencing studies have been restricted to coding regions, but recent studies have revealed that splice mutations can generate transcript variants with distinct tumorigenic and prognostic properties. Here, we performed unrestricted sequencing of all coding sequences and splice regions of TP53 in a single-hospital series of 401 primary CRCs. TP53 splice mutations were detected in 4% of the cases (N = 16), considerably more frequent than reported in major databases, and they were mutually exclusive to exon mutations. RNA sequencing revealed high-level expression of aberrant transcript variants in the majority of splice mutated tumors (75%). Most variants were predicted to produce truncated TP53 proteins, including one sample expressing the potentially oncogenic and druggable p53ψ isoform. Despite heterogeneous transcript structures, downstream transcriptional profiling revealed that TP53 splice mutations had similar effects on TP53 target gene expression and pathway activity as exonic mutations. Intriguingly, TP53 splice mutations were associated with worse 5-year relapse-free survival in stage II disease, compared to both TP53 wild-type and exon mutations (P = 0.007). These data highlight the importance of including splice regions when examining the biological and clinical consequences of TP53 mutations in CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA