RESUMO
Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented ß-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.
Assuntos
Química Click , Fluoretos , Elastase de Leucócito , Proteínas Secretadas Inibidoras de Proteinases , Ácidos Sulfínicos , Química Click/métodos , Fluoretos/síntese química , Fluoretos/química , Fluoretos/farmacologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Proteínas Secretadas Inibidoras de Proteinases/síntese química , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacologiaRESUMO
We present the synthesis of 1,1-bis(fluorosulfonyl)-2-(pyridin-1-ium-1-yl)ethan-1-ide, a bench-stable precursor to ethene-1,1-disulfonyl difluoride (EDSF). The novel SuFEx reagent, EDSF, is demonstrated in the preparation of 26 unique 1,1-bissulfonylfluoride substituted cyclobutenes via a cycloaddition reaction. The regioselective click cycloaddition reaction is rapid, straightforward, and highly efficient, enabling the generation of highly functionalized 4-membered ring (4MR) carbocycles. These carbocycles are valuable structural motifs found in numerous bioactive natural products and pharmaceutically relevant small molecules. Additionally, we showcase diversification of the novel cyclobutene cores through selective Cs2 CO3 -activated SuFEx click chemistry between a single S-F group and an aryl alcohol, yielding the corresponding sulfonate ester products with high efficiency. Finally, density functional theory calculations offer mechanistic insights about the reaction pathway.
RESUMO
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 µM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Assuntos
Fluoretos/química , Elastase de Leucócito/antagonistas & inibidores , Inibidores de Serina Proteinase/química , Compostos de Enxofre/química , Química Click , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Elastase de Leucócito/química , Elastase de Leucócito/metabolismo , Estrutura Molecular , Ligação Proteica , Dobramento de Proteína , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacologiaRESUMO
SuFEx click chemistry is a powerful method designed for the selective, rapid, and modular synthesis of functional molecules. Classical SuFEx reactions form stable S-O linkages upon exchange of S-F bonds with aryl silyl-ether substrates, and while near-perfect in their outcome, are sometimes disadvantaged by relatively high catalyst loadings and prolonged reaction times. We herein report the development of accelerated SuFEx click chemistry (ASCC), an improved SuFEx method for the efficient and catalytic coupling of aryl and alkyl alcohols with a range of SuFExable hubs. We demonstrate Barton's hindered guanidine base (2-tert-butyl-1,1,3,3-tetramethylguanidine; BTMG) as a superb SuFEx catalyst that, when used in synergy with silicon additive hexamethyldisilazane (HMDS), yields stable S-O bond linkages in a single step; often within minutes. The powerful combination of BTMG and HMDS reagents allows for catalyst loadings as low as 1.0â mol % and, in congruence with click-principles, provides a scalable method that is safe, efficient, and practical for modular synthesis. ASSC expands the number of accessible SuFEx products and will find significant application in organic synthesis, medicinal chemistry, chemical biology, and materials science.
Assuntos
Fluoretos/síntese química , Compostos de Enxofre/síntese química , Álcoois/química , Catálise , Química Click , Fluoretos/química , Guanidinas/química , Estrutura Molecular , Compostos de Enxofre/químicaRESUMO
The boom in growth of 1,4-disubstituted triazole products, in particular, since the early 2000's, can be largely attributed to the birth of click chemistry and the discovery of the CuI -catalyzed azide-alkyne cycloaddition (CuAAC). Yet the synthesis of relatively simple, albeit important, 1-substituted-1,2,3-triazoles has been surprisingly more challenging. Reported here is a straightforward and scalable click-inspired protocol for the synthesis of 1-substituted-1,2,3-triazoles from organic azides and the bench stable acetylene surrogate ethenesulfonyl fluoride (ESF). The new transformation tolerates a wide selection of substrates and proceeds smoothly under metal-free conditions to give the products in excellent yield. Under controlled acidic conditions, the 1-substituted-1,2,3-triazole products undergo a Michael addition reaction with a second equivalent of ESF to give the unprecedented 1-substituted triazolium sulfonyl fluoride salts.
RESUMO
Diversity Oriented Clicking (DOC) is a unified click-approach for the modular synthesis of lead-like structures through application of the wide family of click transformations. DOC evolved from the concept of achieving "diversity with ease", by combining classic C-C π-bond click chemistry with recent developments in connective SuFEx-technologies. We showcase 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs) as a new class of connective hub in concert with a diverse selection of click-cycloaddition processes. Through the selective DOC of SASFs with a range of dipoles and cyclic dienes, we report a diverse click-library of 173 unique functional molecules in minimal synthetic steps. The SuFExable library comprises 10 discrete heterocyclic core structures derived from 1,3- and 1,5-dipoles; while reaction with cyclic dienes yields several three-dimensional bicyclic Diels-Alder adducts. Growing the library to 278 discrete compounds through late-stage modification was made possible through SuFEx click derivatization of the pendant sulfonyl fluoride group in 96 well-plates-demonstrating the versatility of the DOC approach for the rapid synthesis of diverse functional structures. Screening for function against MRSA (USA300) revealed several lead hits with improved activity over methicillin.
Assuntos
Química Click , Ácidos Sulfínicos/química , Reação de Cicloadição , Estrutura MolecularRESUMO
SuFEx is a new-generation click chemistry transformation that exploits the unique properties of S-F bonds and their ability to undergo near-perfect reactions with nucleophiles. We report here the first SuFEx-based procedure for the efficient synthesis of pharmaceutically important triflones and bis(trifluoromethyl)sulfur oxyimines from sulfonyl fluorides and iminosulfur oxydifluorides, respectively. The new process involves rapid S-F exchange with trifluoromethyltrimethylsilane (TMSCF3 ) upon activation by potassium bifluoride in anhydrous DMSO. The reaction tolerates a wide selection of substrates and proceeds under mild conditions without need for chromatographic purification. A tentative mechanism is proposed involving nucleophilic displacement of S-F by the trifluoromethyl anion via a five-coordinate intermediate. The utility of late-stage SuFEx trifluoromethylation is demonstrated through the synthesis and selective anticancer properties of a bis(trifluoromethyl)sulfur oxyimine.
Assuntos
Fluoretos/química , Iminas/química , Ácidos Sulfínicos/química , Enxofre/química , Química Click , Hidrocarbonetos Fluorados/química , Íons/química , Metilação , Estrutura MolecularRESUMO
Amide bond formation is one of the most executed reactions in chemistry and biology. This is largely due to the ubiquity of the amide functional group in biological molecules, natural products and pharmaceutically important drugs. We report here the development of "SuFExAmide": a new sulfur-fluoride exchange (SuFEx) click chemistry based protocol for the efficient amidation of carboxylic acids via acyl fluoride intermediates. We have developed benzene-1,3-disulfonyl fluoride as a cost effective, powerful and versatile coupling agent, which delivers challenging secondary and tertiary amides in excellent yields from sterically hindered and electron-deficient amines. The straightforward method offers significant benefits over existing protocols in terms of substrate scope, efficiency and ease of operation and is demonstrated by the synthesis of 44 amides, including GNF6702, an antiprotozoal drug candidate. In the majority of cases, the amide products are obtained in high yield without the need for excess reagents or chromatographic purification.
RESUMO
Phosphorus Fluoride Exchange (PFEx) represents a cutting-edge advancement in catalytic click-reaction technology. Drawing inspiration from Nature's phosphate connectors, PFEx facilitates the reliable coupling of P(V)-F loaded hubs with aryl alcohols, alkyl alcohols, and amines to produce stable, multidimensional P(V)-O and P(V)-N linked products. The rate of P-F exchange is significantly enhanced by Lewis amine base catalysis, such as 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). PFEx substrates containing multiple P-F bonds are capable of selective, serial exchange reactions via judicious catalyst selection. In fewer than four synthetic steps, controlled projections can be deliberately incorporated along three of the four tetrahedral axes departing from the P(V) central hub, thus taking full advantage of the potential for generating three-dimensional diversity. Furthermore, late-stage functionalization of drugs and drug fragments can be achieved with the polyvalent PFEx hub, hexafluorocyclotriphosphazene (HFP), as has been demonstrated in prior research.
RESUMO
A concise semi-synthesis of the Aspidosperma alkaloids, (-)-jerantinine A and (-)-melodinine P, and derivatives thereof, is reported. The novel compounds were shown to have potent activity against MDA-MB-231 triple-negative breast cancer cells. Furthermore, unbiased metabolomics and live cell reporter assays reveal (-)-jerantinine A alters cellular redox metabolism and induces oxidative stress that coincides with cell cycle arrest.
RESUMO
A novel series of addition reactions of highly reactive 2-substituted-alkynyl-1-sulfonyl fluoride (SASF) hubs with DMSO and DMF for the synthesis of two unique sulfonyl fluoride cores is described. The stereoselective chemistry allowed the unprecedented syntheses of 12 (Z)-2-(dimethylsulfonio)-2-(fluorosulfonyl)-1-substitutedethen-1-olates and 10 (E)-1-(dimethylamino)-3-oxo-3-substitutedprop-1-ene-2-sulfonyl fluorides from DMSO and DMF, respectively. The reactions proceed expediently to give single products in excellent yield without the need for chromatographic purification. Furthermore, the utility of the DMSO derived products is demonstrated in the synthesis of synthetically valuable ß-keto sulfonyl fluorides under hydrogenation conditions in excellent yields.
RESUMO
The hydration of carbon-carbon triple bonds is an important and atom economic synthetic transformation. Herein, we report a mild and selective method for the catalytic Markovnikov hydration of (E)-aryl enynes to the corresponding enones, mediated through the bench-stable aminium salt, tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPA). The chemoselective and diastereoselective method proceeds under neutral metal-free conditions, delivering excellent product yields from terminal and internal alkyne units. The synthesis of biologically important (E)-3-styrylisocoumarins, including a formal synthesis of the natural product achlisocoumarin III, demonstrates the utility of this novel transformation.
RESUMO
We demonstrate 1,2-dibromoethane-1-sulfonyl fluoride (DESF) as a bench-stable and readily accessible precursor to the robust SuFEx connector, 1-bromoethene-1-sulfonyl fluoride (BESF). The in situ generation of BESF from DESF opens up several new reaction profiles, including application in the syntheses of unprecedented 3-substituted isoxazole-5-sulfonyl fluorides, 1-substituted-1H-1,2,3-triazole-4-sulfonyl fluorides, 2-amino-1-bromoethane-1-sulfonyl fluorides and 4-bromo-ß-sultams in good to excellent yields. These new modules comprise a pendant sulfonyl fluoride handle, which further undergoes facile and selective SuFEx reactions with a selection of aryl silyl ethers to generate stable and useful sulfonate connections.
RESUMO
The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.