Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zootaxa ; 5093(5): 519-532, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35391470

RESUMO

Blapstinus Dejean is the most taxonomically challenging genus within Blapstinina Mulsant Rey (Tenebrionidae: Opatrini). With over 120 species, it is widely distributed throughout the Americas, with representatives reaching Canada on the northern range edge, and Argentina, Chile, and Uruguay in the south. Traditionally, Blapstinus has been distinguished from other blapstinoid beetles via well-developed metathoracic wings and their lack of synapomorphies present in other genera; however, fused and tapering aedeagal parameres were recently introduced as a potential autapomorphy for the genus. This study used molecular data (nuclear ribosomal 28S, cytochrome oxidase subunit II (COII), arginine kinase (ArgK), carbomyl-phosphate synthetase domain of rudimentary (CAD), and wingless (wg)) to investigate the phylogenetic placement and taxonomic status of three Blapstinus species with distinct male genitalic morphology, i.e. Blapstinus tibialis Champion (USA), B. grandis Champion (Mexico, Nicaragua), and B. punctulatus Solier (Argentina, Bolivia, Brazil, Chile, Uruguay). Analyses highlight the phylogenetic informativeness of the aedeagal morphology within the subtribe, and support an urgent need for taxonomic studies of South American taxa. Blapstinus tibialis and B. grandis were recovered as a specific lineage within Blapstinus that can be easily distinguished from remaining congeners by having tridentate parameres. A lectotype for B. grandis is designated to fix the taxonomic status of this species. Blapstinus punctulatus was recovered outside of its current genus which, along with aedeagal morphology, supports a change of status of the species. As a result, the following synonymy and combinations are introduced: Lodinus Mulsant and Rey stat. restit. (=Austrocaribius Marcuzzi syn. nov.), Lodinus araguae (Marcuzzi) comb. et stat. nov., L. punctulatus comb. nov., L. venezuelensis (Marcuzzi) comb. nov. Lectotypes for Lodinus nigroaeneus Mulsant and Rey, L. araguae, and L. punctulatus are designated to fix the taxonomic status of these species.


Assuntos
Besouros , Animais , Masculino , Filogenia
2.
PLoS One ; 15(8): e0238219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845929

RESUMO

Pinyon-juniper (PJ) woodlands have drastically changed over the last century with juniper encroaching into adjacent habitats and pinyon experiencing large-scale mortality events from drought. Changes in climate and forest composition may pose challenges for animal communities found in PJ woodlands, especially if animals specialize on tree species sensitive to drought. Here we test habitat specialization of ground-dwelling arthropod (GDA) communities underneath pinyon and juniper trees. We also investigate the role of climate and productivity gradients in structuring GDAs within PJ woodlands using two elevational gradients. We sampled 12,365 individuals comprising 115 taxa over two years. We found no evidence that GDAs differ under pinyon or juniper trees, save for a single species of beetle which preferred junipers. Climate and productivity, however, were strongly associated with GDA communities and appeared to drive differences between sites. Precipitation was strongly associated with arthropod richness, while differences in GDA composition were associated with environmental variables (precipitation, temperature, vapor pressure, and normalized difference vegetation index). These relationships varied among different arthropod taxa (e.g. ants and beetles) and community metrics (e.g. richness, abundance, and composition), with individual taxa also responding differently. Overall, our results suggest that GDAs are not dependent on tree type, but are strongly linked to primary productivity and climate, especially precipitation in PJ woodlands. This implies GDAs in PJ woodlands are more susceptible to changes in climate, especially at lower elevations where it is hot and dry, than changes in dominant vegetation. We discuss management implications and compare our findings to GDA relationships with vegetation in other systems.


Assuntos
Artrópodes/classificação , Juniperus/parasitologia , Pinus/parasitologia , Exsudatos de Plantas/metabolismo , Animais , Clima , Florestas , Árvores/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA