Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(1): 476-489, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33686214

RESUMO

ARID1B haploinsufficiency is a frequent cause of intellectual disability (ID) and autism spectrum disorder (ASD), and also leads to emotional disturbances. In this review, we examine past and present clinical and preclinical research into the neurobiological function of ARID1B. The presentation of ARID1B-related disorders (ARID1B-RD) is highly heterogeneous, including varying degrees of ID, ASD, and physical features. Recent research includes the development of suitable clinical readiness assessments for the treatment of ARID1B-RD, as well as similar neurodevelopmental disorders. Recently developed mouse models of Arid1b haploinsufficiency successfully mirror many of the behavioral phenotypes of ASD and ID. These animal models have helped to solidify the molecular mechanisms by which ARID1B regulates brain development and function, including epigenetic regulation of the Pvalb gene and promotion of Wnt/ß-catenin signaling in neural progenitors in the ventral telencephalon. Finally, preclinical studies have identified the use of a positive allosteric modulator of the GABAA receptor as an effective treatment for some Arid1b haploinsufficiency-related behavioral phenotypes, and there is potential for the refinement of this therapy in order to translate it into clinical use.


Assuntos
Transtorno do Espectro Autista , Proteínas de Ligação a DNA , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Fatores de Transcrição , Animais , Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética
2.
Proc Biol Sci ; 289(1976): 20220711, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703052

RESUMO

Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania. We hypothesize that the evolution of cranial traits that increased the efficiency of bite force production in australopiths may have simultaneously weakened the face, leading to the compensatory evolution of additional traits that reinforced the facial skeleton. The evolution of facial form in early hominins can therefore be thought of as an interplay between the need to increase the efficiency of bite force production and the need to maintain the structural integrity of the face.


Assuntos
Hominidae , Animais , Evolução Biológica , Força de Mordida , Face , Fósseis , Crânio/anatomia & histologia
3.
Nicotine Tob Res ; 22(2): 224-231, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30980717

RESUMO

INTRODUCTION: Nicotine can robustly increase responding for conditioned reinforcers (CRs), stimuli that acquire reinforcing properties based on association with primary reinforcers. Menthol and licorice are tobacco flavoring agents also found in sweet foods (eg, candy and ice cream), making them putative CRs before they are consumed in tobacco. We sought to determine if intravenous self-administration (IVSA) of nicotine was enhanced by the inclusion of oral tobacco flavor CRs. METHODS: Menthol (160 or 320 µM) or licorice root extract (0.1% or 1%) were established as CRs (paired with 20% sucrose) or "neutral" stimuli (paired with water) in separate groups. During subsequent IVSA tests, nicotine was delivered in conjunction with oral presentations of the CR. RESULTS: In experiment 1, a menthol CR significantly shifted the peak nicotine dose from 15 µg/kg/infusion (Neutral group) to 3.25 µg/kg/infusion (CR group). In experiment 2, a menthol CR significantly increased operant licks for nicotine (3 µg/kg/infusion) relative to control groups. In experiment 3, both licorice and menthol CRs significantly increased operant licks for nicotine (7.5 µg/kg/infusion) relative to an "inactive" sipper. The licorice CR increased nicotine IVSA in proportion to the strength of the flavor, but both menthol concentrations increased nicotine IVSA to a similar extent. CONCLUSION: Tobacco flavor additives with conditioned reinforcing properties promote acquisition of nicotine self-administration at low unit doses and may have robust impact on tobacco consumption when nicotine yield is low. IMPLICATIONS: Tobacco flavor additives are found in rewarding foods (eg, ice cream) and gain palatability based on associations with primary rewards (eg, sugar) making them "conditioned reinforcers." Nicotine increases the motivation for flavor conditioned reinforcers and the present studies show that tobacco flavor additives can interact with nicotine to promote more nicotine self-administration. The interaction between flavors additives and nicotine may promote nicotine exposure and subsequently dependence.


Assuntos
Aromatizantes/administração & dosagem , Glycyrrhiza , Mentol/administração & dosagem , Nicotina/administração & dosagem , Reforço Psicológico , Paladar/efeitos dos fármacos , Administração Intravenosa , Animais , Relação Dose-Resposta a Droga , Masculino , Motivação/efeitos dos fármacos , Motivação/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração , Sacarose/administração & dosagem , Paladar/fisiologia , Produtos do Tabaco
4.
Semin Cell Dev Biol ; 69: 9-17, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28579452

RESUMO

Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/ß-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Animais , Movimento Celular , Humanos , Proteínas dos Microfilamentos/química , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neuritos/metabolismo , Transdução de Sinais
5.
Neural Plast ; 2016: 2585230, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042359

RESUMO

Hypoxia ischemia (HI) is a recognized risk factor among late-preterm infants, with HI events leading to varied neuropathology and cognitive/behavioral deficits. Studies suggest a sex difference in the incidence of HI and in the severity of subsequent behavioral deficits (with better outcomes in females). Mechanisms of a female advantage remain unknown but could involve sex-specific patterns of compensation to injury. Neuroprotective hypothermia is also used to ameliorate HI damage and attenuate behavioral deficits. Though currently prescribed only for HI in term infants, cooling has potential intrainsult applications to high-risk late-preterm infants as well. To address this important clinical issue, we conducted a study using male and female rats with a postnatal (P) day 7 HI injury induced under normothermic and hypothermic conditions. The current study reports patterns of neuropathology evident in postmortem tissue. Results showed a potent benefit of intrainsult hypothermia that was comparable for both sexes. Findings also show surprisingly different patterns of compensation in the contralateral hemisphere, with increases in hippocampal thickness in HI females contrasting reduced thickness in HI males. Findings provide a framework for future research to compare and contrast mechanisms of neuroprotection and postinjury plasticity in both sexes following a late-preterm HI insult.


Assuntos
Hipocampo/patologia , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/patologia , Plasticidade Neuronal , Animais , Animais Recém-Nascidos , Feminino , Masculino , Células Piramidais/patologia , Ratos , Ratos Wistar , Caracteres Sexuais
6.
Dev Neurosci ; 37(4-5): 440-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791036

RESUMO

Infants born prematurely are at risk for cardiovascular events causing hypoxia-ischemia (HI; reduced blood and oxygen to the brain). HI in turn can cause neuropathology, though patterns of damage are sometimes diffuse and often highly variable (with clinical heterogeneity further magnified by rapid development). As a result, though HI injury is associated with long-term behavioral and cognitive impairments in general, pathology indices for specific infants can provide only limited insight into individual prognosis. The current paper addresses this important clinical issue using a rat model that simulates unilateral HI in a late preterm infant coupled with long-term behavioral evaluation in two processing domains - auditory discrimination and spatial learning/memory. We examined the following: (1) whether deficits on one task would predict deficits on the other (suggesting that subjects with more severe injury perform worse across all cognitive domains) or (2) whether domain-specific outcomes among HI-injured subjects would be uncorrelated (suggesting differential damage to orthogonal neural systems). All animals (sham and HI) received initial auditory testing and were assigned to additional auditory testing (group A) or spatial maze testing (group B). This allowed within-task (group A) and between-task (group B) correlation. Anatomic measures of cortical, hippocampal and ventricular volume (indexing HI damage) were also obtained and correlated against behavioral measures. Results showed that auditory discrimination in the juvenile period was not correlated with spatial working memory in adulthood (group B) in either sham or HI rats. Conversely, early auditory processing performance for group A HI animals significantly predicted auditory deficits in adulthood (p = 0.05; no correlation in shams). Anatomic data also revealed significant relationships between the volumes of different brain areas within both HI and shams, but anatomic measures did not correlate with any behavioral measure in the HI group (though we saw a hippocampal/spatial correlation in shams, in the expected direction). Overall, current data provide an impetus to enhance tools for characterizing individual HI-related pathology in neonates, which could provide more accurate individual prognoses within specific cognitive/behavioral domains and thus improved patient-specific early interventions.


Assuntos
Percepção Auditiva/fisiologia , Transtornos da Percepção Auditiva/fisiopatologia , Encéfalo/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Animais , Animais Recém-Nascidos , Transtornos da Percepção Auditiva/etiologia , Comportamento Animal/fisiologia , Encéfalo/patologia , Discriminação Psicológica/fisiologia , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/complicações , Masculino , Ratos , Ratos Wistar
7.
Parasitology ; 142(3): 428-38, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25118672

RESUMO

This study reports on the prevalence and severity of infections caused by the parasitic dinoflagellate, Hematodinium in juvenile edible crabs (Cancer pagurus) found in 2 intertidal survey sites (Mumbles Head and Oxwich Bay) in the Bristol Channel, UK. Crabs were assessed for the presence and severity of Hematodinium infections by the histological examination of infected tissues. Such infections were found to exhibit a seasonal trend in the 2 study areas with high numbers of animals (ca. 30%) infected in the spring to summer but with low severity. Conversely, in November only ca. 10% of crabs were infected but these animals had large numbers of parasites in their haemolymph and other tissues. At this time, the carapace and underlying tissues of infected crabs had the chalky, pinkish-orange appearance that is characteristic of this disease. Hematodinium-infected crabs ranged in size from 12 to 74 mm carapace width. Overall, it is concluded that the high prevalence of infection of juvenile crabs in this area may have implications for the sustainability of the edible crab fishery in the Bristol Channel.


Assuntos
Braquiúros/parasitologia , Dinoflagellida/fisiologia , Pesqueiros/economia , Animais , Oceano Atlântico , Microscopia de Contraste de Fase , Estações do Ano , Reino Unido
8.
Appl Environ Microbiol ; 79(3): 783-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160130

RESUMO

This study reports on an emerging fungal disease of the edible crab, Cancer pagurus. Juvenile (prerecruit) crabs were found to be subject to this disease condition during the months of May to September at two intertidal sites in South Wales, United Kingdom. Histopathology revealed that the fungi overwhelm the host response in the tissues, leading to progressive septicemia. The causative agent of this infection was isolated and grown in pure culture and was identified as a member of the Ophiocordyceps clade by sequencing of the small subunit of the fungal ribosomal DNA (rDNA). Of the crabs naturally infected with the fungus, 94% had a coinfection with the parasitic dinoflagellate Hematodinium species. To determine if there was any interaction between the two disease-causing agents, apparently fungus-free crabs, both with and without natural Hematodinium infections, were challenged with the fungal isolate. The presence of Hematodinium caused a significant reduction in fungal multiplication in the hemocoel of the crabs in comparison to that in Hematodinium-free individuals. Histopathology of coinfected crabs showed a systemic multiplication of Hematodinium within host tissues, leading to a rapid death, while Hematodinium-free crabs experimentally infected with the fungal isolate died due to fungal sepsis (septicemia) with the same characteristic pathology as seen in natural infections.


Assuntos
Alveolados/classificação , Alveolados/isolamento & purificação , Anomuros/microbiologia , Anomuros/parasitologia , Fungos/classificação , Fungos/isolamento & purificação , Interações Microbianas , Alveolados/genética , Alveolados/patogenicidade , Animais , Anomuros/fisiologia , DNA Fúngico/química , DNA Fúngico/genética , DNA de Protozoário/química , DNA de Protozoário/genética , Fungos/genética , Fungos/patogenicidade , Histocitoquímica , Epidemiologia Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Sobrevida , País de Gales
9.
Am J Phys Anthropol ; 151(3): 339-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23794330

RESUMO

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.


Assuntos
Adaptação Biológica , Antropologia/métodos , Evolução Biológica , Dieta , Hominidae/anatomia & histologia , Animais , Isótopos de Carbono/análise , Esmalte Dentário/anatomia & histologia , Ingestão de Alimentos , Análise de Elementos Finitos , Hominidae/fisiologia
10.
J R Soc Interface ; 20(198): 20220536, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695017

RESUMO

Models are mathematical representations of systems, processes or phenomena. In biomechanics, finite-element modelling (FEM) can be a powerful tool, allowing biologists to test form-function relationships in silico, replacing or extending results of in vivo experimentation. Although modelling simplifications and assumptions are necessary, as a minimum modelling requirement the results of the simplified model must reflect the biomechanics of the modelled system. In cases where the three-dimensional mechanics of a structure are important determinants of its performance, simplified two-dimensional modelling approaches are likely to produce inaccurate results. The vertebrate mandible is one among many three-dimensional anatomical structures routinely modelled using two-dimensional FE analysis. We thus compare the stress regimes of our published three-dimensional model of the chimpanzee mandible with a published two-dimensional model of the chimpanzee mandible and identify several fundamental differences. We then present a series of two-dimensional and three-dimensional FE modelling experiments that demonstrate how three key modelling parameters, (i) dimensionality, (ii) symmetric geometry, and (iii) constraints, affect deformation and strain regimes of the models. Our results confirm that, in the case of the primate mandible (at least), two-dimensional FEM fails to meet this minimum modelling requirement and should not be used to draw functional, ecological or evolutionary conclusions.


Assuntos
Mandíbula , Pan troglodytes , Animais , Simulação por Computador , Fenômenos Biomecânicos , Análise de Elementos Finitos , Modelos Biológicos , Estresse Mecânico
12.
Proc Natl Acad Sci U S A ; 106(7): 2124-9, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19188607

RESUMO

The African Plio-Pleistocene hominins known as australopiths evolved a distinctive craniofacial morphology that traditionally has been viewed as a dietary adaptation for feeding on either small, hard objects or on large volumes of food. A historically influential interpretation of this morphology hypothesizes that loads applied to the premolars during feeding had a profound influence on the evolution of australopith craniofacial form. Here, we test this hypothesis using finite element analysis in conjunction with comparative, imaging, and experimental methods. We find that the facial skeleton of the Australopithecus type species, A. africanus, is well suited to withstand premolar loads. However, we suggest that the mastication of either small objects or large volumes of food is unlikely to fully explain the evolution of facial form in this species. Rather, key aspects of australopith craniofacial morphology are more likely to be related to the ingestion and initial preparation of large, mechanically protected food objects like large nuts and seeds. These foods may have broadened the diet of these hominins, possibly by being critical resources that australopiths relied on during periods when their preferred dietary items were in short supply. Our analysis reconciles apparent discrepancies between dietary reconstructions based on biomechanics, tooth morphology, and dental microwear.


Assuntos
Fenômenos Biomecânicos , Animais , Evolução Biológica , Dieta , Ecologia , Comportamento Alimentar , Análise de Elementos Finitos , Fósseis , Hominidae/anatomia & histologia , Macaca , Modelos Teóricos , Músculos/patologia , Paleontologia/métodos , Software
13.
J Anat ; 218(1): 142-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21070237

RESUMO

Finite element analysis was used to assess whether the postorbital septum plays a meaningful biomechanical role as a structural support for the circumorbital region in a species of macaque, an anthropoid primate. A finite element model was constructed of a Macaca fascicularis cranium that was subsequently modified to create a second model in which the septum was removed bilaterally. The models were subjected to forces and constraints simulating a molar bite, and resulting strains and displacements were recorded. Strain magnitudes at selected locations on the models were typically lower or unchanged in the model lacking septae, which would seem to be contrary to expectations. However, more broadly, relative to the model containing septae, the model without septae exhibited a mosaic pattern of strain increases and decreases in the circumorbital region. The model lacking septae also exhibited more asymmetric displacements in the orbital region, although not in precisely the manner predicted by prior experimental studies. Overall, the mechanical impact of the postorbital septum is minimal in macaques. These results, when considered along with those of prior experimental studies, suggest that either the postorbital septum in anthropoids did not evolve for mechanical reasons, or, if it did, it no longer plays such a role in extant taxa.


Assuntos
Órbita/anatomia & histologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Músculos Faciais/anatomia & histologia , Músculos Faciais/fisiologia , Análise de Elementos Finitos/normas , Macaca fascicularis , Mastigação/fisiologia , Modelos Anatômicos , Reprodutibilidade dos Testes , Estresse Mecânico
14.
Interface Focus ; 11(5): 20200083, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34938433

RESUMO

Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo, suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P3) and molar (M2) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo. Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis.

15.
Interface Focus ; 11(5): 20210031, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34938438

RESUMO

The mechanical behaviour of the mandibles of Pan and Macaca during mastication was compared using finite element modelling. Muscle forces were calculated using species-specific measures of physiological cross-sectional area and scaled using electromyographic estimates of muscle recruitment in Macaca. Loading regimes were compared using moments acting on the mandible and strain regimes were qualitatively compared using maps of principal, shear and axial strains. The enlarged and more vertically oriented temporalis and superficial masseter muscles of Pan result in larger sagittal and transverse bending moments on both working and balancing sides, and larger anteroposterior twisting moments on the working side. The mandible of Pan experiences higher principal strain magnitudes in the ramus and mandibular prominence, higher transverse shear strains in the top of the symphyseal region and working-side corpus, and a predominance of sagittal bending-related strains in the balancing-side mandible. This study lays the foundation for a broader comparative study of Hominidae mandibular mechanics in extant and fossil hominids using finite element modelling. Pan's larger and more vertical masseter and temporalis may make it a more suitable model for hominid mandibular biomechanics than Macaca.

16.
Nat Ecol Evol ; 5(1): 38-45, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168991

RESUMO

Paranthropus robustus is a small-brained extinct hominin from South Africa characterized by derived, robust craniodental morphology. The most complete known skull of this species is DNH 7 from Drimolen Main Quarry, which differs from P. robustus specimens recovered elsewhere in ways attributed to sexual dimorphism. Here, we describe a new fossil specimen from Drimolen Main Quarry, dated from approximately 2.04-1.95 million years ago, that challenges this view. DNH 155 is a well-preserved adult male cranium that shares with DNH 7 a suite of primitive and derived features unlike those seen in adult P. robustus specimens from other chronologically younger deposits. This refutes existing hypotheses linking sexual dimorphism, ontogeny and social behaviour within this taxon, and clarifies hypotheses concerning hominin phylogeny. We document small-scale morphological changes in P. robustus associated with ecological change within a short time frame and restricted geography. This represents the most highly resolved evidence yet of microevolutionary change within an early hominin species.


Assuntos
Hominidae , Animais , Fósseis , Masculino , Filogenia , Crânio , África do Sul
17.
Sci Rep ; 10(1): 7834, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398858

RESUMO

Inhibitory interneurons are essential for proper brain development and function. Dysfunction of interneurons is implicated in several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability (ID). We have previously shown that Arid1b haploinsufficiency interferes with interneuron development and leads to social, cognitive, and emotional impairments consistent with ASD and ID. It is unclear, however, whether interneurons play a major role for the behavioral deficits in Arid1b haploinsufficiency. Furthermore, it is critical to determine which interneuron subtypes contribute to distinct behavioral phenotypes. In the present study, we generated Arid1b haploinsufficient mice in which a copy of the Arid1b gene is deleted in either parvalbumin (PV) or somatostatin (SST) interneurons, and examined their ASD- and ID-like behaviors. We found that Arid1b haploinsufficiency in PV or SST interneurons resulted in distinct features that do not overlap with one another. Arid1b haploinsufficiency in PV neurons contributed to social and emotional impairments, while the gene deletion in the SST population caused stereotypies as well as learning and memory dysfunction. These findings demonstrate a critical role of interneurons in Arid1b haploinsufficient pathology and suggest that PV and SST interneurons may have distinct roles in modulating neurological phenotypes in Arid1b haploinsufficiency-induced ASD and ID.


Assuntos
Transtorno do Espectro Autista/genética , Haploinsuficiência , Deficiência Intelectual/genética , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Fatores de Transcrição/genética , Animais , Ansiedade/complicações , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Depressão/complicações , Regulação da Expressão Gênica , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Interneurônios/patologia , Memória , Fenótipo , Comportamento Social , Aprendizagem Espacial
18.
Artigo em Inglês | MEDLINE | ID: mdl-30149092

RESUMO

Haploinsufficiency of the chromatin remodeling factor ARID1B leads to autism spectrum disorder and intellectual disability. Several independent research groups, including our own, recently examined the effects of heterozygous deletion of Arid1b in mice and reported severe behavioral abnormalities reminiscent of autism spectrum disorders and intellectual disability as well as marked changes in gene expression and decreased body size. Arid1b heterozygous mice also display significant cortical excitatory/inhibitory imbalance due to altered GABAergic neuron numbers and impaired inhibitory synaptic transmission. Abnormal epigenetic modifications, including histone acetylation and methylation, are additionally associated with Arid1b haploinsufficiency in the brain. Treating adult Arid1b mutant mice with a positive GABA allosteric modulator, however, rescues multiple behavioral abnormalities, such as cognitive and social impairments, as well as elevated anxiety. While treating Arid1b haploinsufficient mice with recombinant mouse growth hormone successfully increases body size, it has no effect on aberrant behavior. Here we summarize the recent findings regarding the role of ARID1B in brain development and behavior and discuss the utility of the Arid1b heterozygous mouse model in neurodevelopmental and psychiatric research. We also discuss some of the opportunities and potential challenges in developing translational applications for humans and possible avenues for further research into the mechanisms of ARID1B pathology in the brain.


Assuntos
Comportamento/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Fatores de Transcrição/genética
19.
Autophagy ; 13(8): 1348-1363, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28598226

RESUMO

Interneuron progenitors in the ganglionic eminence of the ventral telencephalon generate most cortical interneurons during brain development. However, the regulatory mechanism of interneuron progenitors remains poorly understood. Here, we show that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) regulates proliferation and macroautophagy/autophagy of interneuron progenitors in the developing ventral telencephalon. To investigate the role of MTOR in interneuron progenitors, we conditionally deleted the Mtor gene in mouse interneuron progenitors and their progeny by using Tg(mI56i-cre,EGFP)1Kc/Dlx5/6-Cre-IRES-EGFP and Nkx2-1-Cre drivers. We found that Mtor deletion markedly reduced the number of interneurons in the cerebral cortex. However, relative positioning of cortical interneurons was normal, suggesting that disruption of progenitor self-renewal caused the decreased number of cortical interneurons in the Mtor-deleted brain. Indeed, Mtor-deleted interneuron progenitors showed abnormal proliferation and cell cycle progression. Additionally, we detected a significant activation of autophagy in Mtor-deleted brain. Our findings suggest that MTOR plays a critical role in the regulation of cortical interneuron number and autophagy in the developing brain.


Assuntos
Autofagia , Encéfalo/citologia , Encéfalo/embriologia , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Deleção de Genes , Integrases/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Tamanho do Órgão , Sirolimo/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Telencéfalo/citologia , Telencéfalo/embriologia
20.
Anat Rec (Hoboken) ; 300(1): 171-195, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28000396

RESUMO

Australopiths exhibit a number of derived facial features that are thought to strengthen the face against high and/or repetitive loads associated with a diet that included mechanically challenging foods. Here, we use finite element analysis (FEA) to test hypotheses related to the purported strengthening role of the zygomatic root and "anterior pillar" in australopiths. We modified our previously constructed models of Sts 5 (Australopithecus africanus) and MH1 (A. sediba) to differ in the morphology of the zygomatic root, including changes to both the shape and positioning of the zygomatic root complex, in addition to creating variants of Sts 5 lacking anterior pillars. We found that both an expanded zygomatic root and the presence of "anterior pillars" reinforce the face against feeding loads. We also found that strain orientations are most compatible with the hypothesis that the pillar evolved to resist loads associated with premolar loading, and that this morphology has an ancillary effect of strengthening the face during all loading regimes. These results provide support for the functional hypotheses. However, we found that an anteriorly positioned zygomatic root increases strain magnitudes even in models with an inflated/reinforced root complex. These results suggest that an anteriorly placed zygomatic root complex evolved to enhance the efficiency of bite force production while facial reinforcement features, such as the anterior pillar and the expanded zygomatic root, may have been selected for in part to compensate for the weakening effect of this facial configuration. Anat Rec, 300:171-195, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Hominidae/anatomia & histologia , Hominidae/fisiologia , Mastigação/fisiologia , Crânio/fisiologia , Zigoma/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Força de Mordida , Dieta , Comportamento Alimentar/fisiologia , Análise de Elementos Finitos , Modelos Teóricos , Crânio/anatomia & histologia , Zigoma/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA