Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791318

RESUMO

Bryophyllum pinnatum (BP) is a medicinal plant used to treat many conditions when taken as a leaf juice, leaves in capsules, as an ethanolic extract, and as herbal tea. These preparations have been chemically analyzed except for decoctions derived from boiled green leaves. In preparation for a clinical trial to validate BP tea as a treatment for kidney stones, we used NMR and MS analyses to characterize the saturation kinetics of the release of metabolites. During boiling of the leaves, (a) the pH decreased to 4.8 within 14 min and then stabilized; (b) regarding organic acids, citric and malic acid were released with maximum release time (tmax) = 35 min; (c) for glycoflavonoids, quercetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (Q-3O-ArRh), myricetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (M-3O-ArRh), kappinatoside, myricitrin, and quercitrin were released with tmax = 5-10 min; and (d) the total phenolic content (TPC) and the total antioxidant capacity (TAC) reached a tmax at 55 min and 61 min, respectively. In summary, 24 g of leaves boiled in 250 mL of water for 61 min ensures a maximal release of key water-soluble metabolites, including organic acids and flavonoids. These metabolites are beneficial for treating kidney stones because they target oxidative stress and inflammation and inhibit stone formation.


Assuntos
Kalanchoe , Cálculos Renais , Espectroscopia de Ressonância Magnética , Extratos Vegetais , Folhas de Planta , Kalanchoe/química , Espectroscopia de Ressonância Magnética/métodos , Cálculos Renais/tratamento farmacológico , Cálculos Renais/metabolismo , Cálculos Renais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Cinética , Espectrometria de Massas/métodos , Humanos , Malatos/química , Malatos/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047598

RESUMO

Agriculture involving industrial fertilizers is another major human made contributing factor to soil pH variation after natural factors such as soil parent rock, weathering time span, climate, and vegetation. The current study assessed the potential effect of cell-free supernatant (CFS) obtained from Bacillus subtilis EB2004S and Lactobacillus helveticus EL2006H cultured at three pH levels (5, 7, and 8) on potato (var Goldrush) growth enhancement in a greenhouse pot experiment. The results showed that CFSs obtained from B. subtilis EB2004S and L. helveticus EL2006H cultured at pH 5 significantly improved photosynthetic rates, stomatal conductance, root fresh weight, and whole plant fresh weight. interactive effects of pot pH and that of CFSs obtained from pH 5 influenced chlorophyll, plant height, and shoot and whole plant fresh weight. Moreover, treatment 52EB2004S~0.4% initiated early tuberization for potato grown at pH 7 and 8. Potato grown at pH 5, which received a 72EB2004S~0.4% CFS treatment, had greater whole plant fresh and dry weight than that treated with L. helveticus EL2006H CFS and a positive control. Taken together, the findings of this study are unique in that it probed the effect of CFS produced under differing pH conditions which revealed a new possibility to mitigate stresses in plants.


Assuntos
Lactobacillus helveticus , Solanum tuberosum , Humanos , Bacillus subtilis , Solo , Concentração de Íons de Hidrogênio
3.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499471

RESUMO

It is well-known that there is a high frequency of plant-growth-promoting strains in Bacillus subtilis and that these can be effective under both stressful and stress-free conditions. There are very few studies of this activity in the case of Lactobacillus helveticus. In this study, the effects of pH on the secretome (proteins) in the cell-free supernatants of two bacterial strains were evaluated. The bacteria were cultured at pH 5, 7 and 8, and their secretome profiles were analyzed, with pH 7 (optimal growth pH) considered as the "control". The results showed that acidity (lower pH 5) diminishes the detectable production of most of the secretome proteins, whereas alkalinity (higher pH 8) increases the detectable protein production. At pH 5, five (5) new proteins were produced by L. helveticus, including class A sortase, fucose-binding lectin II, MucBP-domain-containing protein, SLAP-domain-containing protein and hypothetical protein LHEJCM1006_11110, whereas for B. subtilis, four (4) types of proteins were uniquely produced (p ≤ 0.05), including helicase-exonuclease AddAB subunit AddB, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, a cluster of ABC-F family ATP-binding-cassette-domain-containing proteins and a cluster of excinuclease ABC (subunit B). At pH 8, Bacillus subtilis produced 56 unique proteins. Many of the detected proteins were involved in metabolic processes, whereas the others had unknown functions. The unique and new proteins with known and unknown functions suggest potential the acclimatization of the microbes to pH stress.


Assuntos
Bacillus subtilis , Lactobacillus helveticus , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Concentração de Íons de Hidrogênio
4.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684348

RESUMO

Climate change, environmental pollution and associated abiotic stresses are beginning to meaningfully affect agricultural production worldwide. Salt stress is, however, one of the most important threats that significantly impairs plant growth and development. Plants in their early growth stages such as seed germination, seed emergence and early seedling growth are very sensitive to salt stress. Among the range of sustainable techniques adopted to improve seed germination and early plant growth is seed priming; however, with the use of ecofriendly substances, this is one of the most effective and economically viable techniques to improve seed tolerance against such environmental stresses. For instance, priming with appropriate non-synthetic compounds including microbial biostimulants are prominent ways to sustainably address these challenges. Therefore, in this research, by using the "priming technique", two biostimulants were tested for their potential as sustainable approaches to improve canola and soybean seed germination under salt stress and optimal growth conditions. Canola and soybean seeds were primed with flavonoids extracted from citrus fruits (flavopriming) and cell-free supernatant (CFS; produced by a novel strain of Devosia sp.-SL43), alone and in combination, and exposed to low-higher levels of salt stress and ideal growth conditions. Both biostimulants showed promising effects by significantly improving seed germination of soybean and canola under both ideal and stressful conditions. However, increases in seed germination were greater under salinity stress as flavonoids and CFS with stress amelioration effects showed substantial and statistically significant improvements in seed germination under varying levels of salt stress. In addition, combinations (mixtures) of both biostimulants were tested to determine if their effects might be more additive or multiplicative than the individual applications. However, results suggested incompatibility of both biostimulants as none of the combinations showed better results than that of the individual applications of either flavonoids or CFS. Conceivably, the use of flavonoids and this novel Devosia sp. CFS could be significant plant growth enhancers, perhaps much better than the few other biostimulants and bacterial-based compounds currently in use.


Assuntos
Brassica napus , Citrus , Fabaceae , Sistema Livre de Células , Flavonoides/farmacologia , Germinação , Plântula , Sementes , Glycine max
5.
Invest New Drugs ; 32(1): 14-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23686707

RESUMO

Heat shock protein 90 (Hsp90) is a molecular chaperone essential for the stability and function of multiple cellular client proteins, a number of which have been implicated in the pathogenesis of breast cancer. Here we undertook a comprehensive evaluation of the activity of ganetespib, a selective Hsp90 inhibitor, in this malignancy. With low nanomolar potency, ganetespib reduced cell viability in a panel of hormone receptor-positive, HER2-overexpressing, triple-negative and inflammatory breast cancer cell lines in vitro. Ganetespib treatment induced a rapid and sustained destabilization of multiple client proteins and oncogenic signaling pathways and even brief exposure was sufficient to induce and maintain suppression of HER2 levels in cells driven by this receptor. Indeed, HER2-overexpressing BT-474 cells were comparatively more sensitive to ganetespib than the dual HER2/EGFR tyrosine kinase inhibitor lapatinib in three-dimensional culture. Ganetespib exposure caused pleiotropic effects in the inflammatory breast cancer line SUM149, including receptor tyrosine kinases, MAPK, AKT and mTOR signaling, transcription factors and proteins involved in cell cycle, stress and apoptotic regulation, as well as providing combinatorial benefit with lapatinib in these cells. This multimodal activity translated to potent antitumor efficacy in vivo, suppressing tumor growth in MCF-7 and MDA-MB-231 xenografts and inducing tumor regression in the BT-474 model. Thus, ganetespib potently inhibits Hsp90 leading to the degradation of multiple clinically-validated oncogenic client proteins in breast cancer cells, encompassing the broad spectrum of molecularly-defined subtypes. This preclinical activity profile suggests that ganetespib may offer considerable promise as a new therapeutic candidate for patients with advanced breast cancers.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Terapia de Alvo Molecular , Triazóis/farmacologia , Triazóis/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico HSP90/classificação , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos SCID , Estabilidade Proteica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Invest New Drugs ; 32(4): 577-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24682747

RESUMO

The integration of targeted agents to standard cytotoxic regimens has improved outcomes for patients with colorectal cancer (CRC) over recent years; however this malignancy remains the second leading cause of cancer mortality in industrialized countries. Small molecule inhibitors of heat shock protein 90 (HSP90) are one of the most actively pursued classes of compounds for the development of new cancer therapies. Here we evaluated the activity of ganetespib, a second-generation HSP90 inhibitor, in models of CRC. Ganetespib reduced cell viability in a panel of CRC cell lines in vitro with low nanomolar potency. Mechanistically, drug treatment exerted concomitant effects on multiple oncogenic signaling pathways, cell cycle regulation, and DNA damage repair capacity to promote apoptosis. Combinations of ganetespib and low-dose ionizing radiation enhanced the radiosensitivity of HCT 116 cells and resulted in superior cytotoxic activity over either treatment alone. In vivo, the single-agent activity of ganetespib was relatively modest, suppressing HCT 116 xenograft tumor growth by approximately half. However, ganetespib significantly potentiated the antitumor efficacy of the 5-Fluorouracil (5-FU) prodrug capecitabine in HCT 116 xenografts, causing tumor regressions in a model that is intrinsically resistant to fluoropyrimidine therapy. This demonstration of combinatorial benefit afforded by an HSP90 inhibitor to a standard CRC adjuvant regimen provides an attractive new framework for the potential application of ganetespib as an investigational agent in this disease.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Triazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Capecitabina , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Adjuvante/métodos , Neoplasias Colorretais/radioterapia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Feminino , Fluoruracila/análogos & derivados , Fluoruracila/farmacologia , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Plants (Basel) ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931116

RESUMO

Endophytic microorganisms represent promising solutions to environmental challenges inherent in conventional agricultural practices. This study concentrates on the identification of endophytic bacteria isolated from the root, stem, and leaf tissues of four Artemisia plant species. Sixty-one strains were isolated and sequenced by 16S rDNA. Sequencing revealed diverse genera among the isolated bacteria from different Artemisia species, including Bacillus, Pseudomonas, Enterobacter, and Lysinibacillus. AR11 and VR24 obtained from the roots of A. absinthium and A. vulgaris demonstrated significant inhibition on Fusarium c.f. oxysporum mycelial growth. In addition, AR11, AR32, and CR25 exhibited significant activity in phosphatase solubilization, nitrogen fixation, and indole production, highlighting their potential to facilitate plant growth. A comparative analysis of Artemisia species showed that root isolates from A. absinthium, A. campestris, and A. vulgaris have beneficial properties for inhibiting pathogen growth and enhancing plant growth. AR11 with 100% similarity to Bacillus thuringiensis, could be considered a promising candidate for further investigation as microbial biofertilizers. This finding highlights their potential as environmentally friendly alternatives to chemical pesticides, thereby contributing to sustainable crop protection practices.

8.
Front Microbiol ; 14: 1184158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601342

RESUMO

Lipo-chito-oligosaccharide (LCO-from Bradyrhizobium japonicum) and thuricin 17 (Th17-from Bacillus thuringiensis) are bacterial signal compounds from the rhizosphere of soybean that have been shown to enhance plant growth in a range of legumes and non-legumes. In this study, an attempt to quantify phytohormones involved in the initial hours after exposure of Arabidopsis thaliana to these compounds was conducted using UPLC-ESI-MS/MS. A petri-plate assay was conducted to screen for drought stress tolerance to PEG 8000 infusion and plant growth was studied 21-days post-stress. Arabidopsis thaliana plants grown in trays with drought stress imposed by water withhold were used for free proline determination, elemental analysis, and untargeted proteomics using LC-MS/MS studies. At 24 h post-exposure to the signal compounds under optimal growth conditions, Arabidopsis thaliana rosettes varied in their responses to the two signals. While LCO-treated rosettes showed a decrease in total IAA, cytokinins, gibberellins, and jasmonic acid, increases in ABA and SA was very clear. Th17-treated rosettes, on the other hand, showed an increase in IAA and SA. Both treatments resulted in decreased JA levels. Under severe drought stress imposed by PEG 8000 infusion, LCO and Th17 treatments were found to significantly increase fresh and dry weight over drought-stressed control plates, indicating that the presence of the signaling compounds decreased the negative effects experienced by the plants. Free proline content increased in LCO- and Th17-treated plants after water-withhold drought stress. Elemental analysis showed a significant increase in carbon percentage at the lower concentration of Th17. Untargeted proteomics revealed changes in the levels of drought-specific ribosomal proteins, glutathione S-transferase, late embryogenesis proteins, vegetative storage proteins 1 and 2, thaumatin-like proteins, and those related to chloroplast and carbon metabolism. The roles of some of these significantly affected proteins detected under drought stress are discussed.

9.
J Proteomics ; 289: 105006, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37717723

RESUMO

Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, the interactions between pure cultures of P. entomophila 23S and Cmm were investigated. First, the population dynamics of each bacterium during the interaction was determined using the selective media. Second, the amount of anti-Cmm compound produced by P. entomophila 23S in the presence of Cmm was quantified using HPLC. Lastly, a label-free shotgun proteomics study of P. entomophila 23S, Cmm, and a co-culture was conducted to understand the effects of the interaction of each bacterium at the proteomic level. Compared with the pure culture grown, the total number of proteins decreased in the interaction for both bacteria. P. entomophila 23S secreted stress-related proteins, such as chaperonins, peptidases, ABC-transporters and elongation factors. The bacterium also produced more proteins related with purine, pyrimidine, carbon and nitrogen metabolisms in the presence of Cmm. The population enumeration study revealed that the Cmm population declined dramatically during the interaction, while the population of P. entomophila 23S maintained. The quantification of anti-Cmm compound indicated that P. entomophila 23S produced significantly higher amount of anti-Cmm compound when it was cultured with Cmm. Overall, the study suggested that P. entomophila 23S, although is cidal to Cmm, was also negatively affected by the presence of Cmm, while trying to adapt to the stress condition, and that such an environment favored increased production of the anti-Cmm compound by P. entomophila 23S. SIGNIFICANCE: Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, secreted proteome of pure cultures of P. entomophila 23S and Cmm, and also of a co-culture was first time identified. Furthermore, the study found that P. entomophila strain 23S produced significantly higher amount of anti-Cmm compound when the bacterium was grown together with Cmm. Co-culture enhancing anti-Cmm compound production by P. entomophila 23S is useful information, particularly from a commercial point of view of biocontrol application, and for scale-up of anti-Cmm compound production.


Assuntos
Proteoma , Proteômica , Clavibacter , Doenças das Plantas/microbiologia
10.
Front Plant Sci ; 14: 1071346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056501

RESUMO

Soil salinity is a major constraint for soybean production worldwide, and the exploitation of plant growth-promoting bacteria (PGPB) and their bioactive metabolite(s) can improve plant salinity tolerance. With this objective, two experiments were performed, aiming to test 4 culture media (YEM(A), TYE(A), TS(A), and LB(A)) for growing a novel Devosia sp. (strain SL43), and then evaluating cell-free supernatants (CFS) from the Devosia sp. on germination of soybean (Glycine max L.) seeds under salinity stress. Soybean seeds were subjected to three salinity levels (0, 100, and 125 mM NaCl) and 6 levels of Devosia sp. CFS dilution (0, 1:1, 1:100, 1:250, 1:500, 1:1000). The results indicated that 125 mM NaCl concentration caused the greatest reduction in the total number of germinated seeds (15%), germination rate (43.6%), root length (55.2%), root weight (39.3%), and seed vigor (68%), and it also increased mean germination time by 71.9%. However, Devosia-CFS improved soybean germination, and the greatest effect was obtained at 1:1 dilution. Under the highest salinity level, application of CFS at 1:1 dilution increased final germination (17.6%), germination rate (18.6%), root length (162.2%), root weight (239.4%), seed vigor index (318.7%), and also shortening mean germination time by 19.2%. The results indicated that seed vigor index was positively correlated with other traits except for mean germination time. Our study suggested that the highest productivity of Devoisa sp. was obtained from the YEM medium. Results also suggested that CFS produced by the novel Devosia sp. (SL43 strain) can successfully alleviate salt stress effects on soybean seed germination and manipulating the chemical composition of the growth medium can influence the effectiveness of these bioactive metabolites.

11.
Front Plant Sci ; 14: 1205894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538061

RESUMO

Bacillus species and their metabolites have potential alternative uses as chemical pesticides that can limit the growth of potential plant pathogens and enhance crop productivity. The aim of this study was to investigate the potential of Bacillus subtilis FJ3 for promoting plant growth and controlling fungal plant pathogens. The study evaluated the ability of the strain to promote plant growth in vitro by characterizing its growth-promoting traits, which included the production of hydrolytic enzymes, indole acetic acid, siderophores, biofilm formation, and phosphate solubilization. Polymerase Chain Reaction (PCR) testing revealed that strain FJ3 has the potential to produce lipopeptides such as fengycin, surfactin, mycosubtilin, and pilpastatin. Through in vitro antagonism testing it was demonstrated that strain FJ3 is able to inhibit Fusarium oxysporum by 52% compared to the untreated control and was antagonistic against Aspergillus flavus, Aspergillus niger, and Rhizopus oryzae using a dual method. The minimum inhibitory concentration of Bacillus crude extract resulted in a 92%, 90%, 81.5%, and 56% growth inhibition of Fusarium oxysporum, A. niger, A. flavus, and Rhizopus oryzae, respectively. In FT-IR and GC-MS analysis of crude LPs extract, the transmission and mass spectrum confirmed the existence of aforesaid lipopeptides containing ß-fatty acids with chain lengths ranging from C14 to C21 in which the majority were saturated fatty acids. Greenhouse experimentation revealed that Bacillus strain FJ3 and its metabolites significantly diminished the disease incidence with an average reduction of 31.56%. In sterilized soil, FJ3 and its metabolites caused 24.01% and 10.46% growth promotion, respectively, in chickpea. The results demonstrated that Bacillus strain FJ3 has broad-spectrum antifungal and plant growth-promoting applications and could be a promising candidate for development into a commercialized biobased product for use in sustainable agriculture practice.

12.
Front Microbiol ; 14: 1206152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700863

RESUMO

Salt stress can affect survival, multiplication and ability of plant growth promoting microorganisms to enhance plant growth. Changes in a microbe's proteome profile is one of the mechanisms employed by PGPM to enhance tolerance of salt stress. This study was focused on understanding changes in the exoproteome profile of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H when exposed to salt stress. The strains were cultured in 100 mL M13 (B. amyloliquefaciens) and 100 mL De man, Rogosa and Sharpe (MRS) (L. helveticus) media, supplemented with 200 and 0 mM NaCl (control), at pH 7.0. The strains were then incubated for 48 h (late exponential growth phase), at 120 rpm and 30 (B. amyloliquefaciens) and 37 (L. helveticus) °C. The microbial cultures were then centrifuged and filtered sterilized, to obtain cell free supernatants whose proteome profiles were studied using LC-MS/MS analysis and quantified using scaffold. Results of the study revealed that treatment with 200 mM NaCl negatively affected the quantity of identified proteins in comparison to the control, for both strains. There was upregulation and downregulation of some proteins, even up to 100%, which resulted in identification of proteins significantly unique between the control or 200 mM NaCl (p ≤ 0.05), for both microbial species. Proteins unique to 200 mM NaCl were mostly those involved in cell wall metabolism, substrate transport, oxidative stress tolerance, gene expression and DNA replication and repair. Some of the identified unique proteins have also been reported to enhance plant growth. In conclusion, based on the results of the work described here, PGPM alter their exoproteome profile when exposed to salt stress, potentially upregulating proteins that enhance their tolerance to this stress.

13.
Front Plant Sci ; 14: 1176648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404529

RESUMO

Introduction: The endosphere of a plant is an interface containing a thriving community of endobacteria that can affect plant growth and potential for bioremediation. Eichhornia crassipes is an aquatic macrophyte, adapted to estuarine and freshwater ecosystems, which harbors a diverse bacterial community. Despite this, we currently lack a predictive understanding of how E. crassipes taxonomically structure the endobacterial community assemblies across distinct habitats (root, stem, and leaf). Methods: In the present study, we assessed the endophytic bacteriome from different compartments using 16S rRNA gene sequencing analysis and verified the in vitro plant beneficial potential of isolated bacterial endophytes of E. crassipes. Results and discussion: Plant compartments displayed a significant impact on the endobacterial community structures. Stem and leaf tissues were more selective, and the community exhibited a lower richness and diversity than root tissue. The taxonomic analysis of operational taxonomic units (OTUs) showed that the major phyla belonged to Proteobacteria and Actinobacteriota (> 80% in total). The most abundant genera in the sampled endosphere was Delftia in both stem and leaf samples. Members of the family Rhizobiaceae, such as in both stem and leaf samples. Members of the family Rhizobiaceae, such as Allorhizobium- Neorhizobium-Pararhizobium-Rhizobium were mainly associated with leaf tissue, whereas the genera Nannocystis and Nitrospira from the families Nannocystaceae and Nitrospiraceae, respectively, were statistically significantly associated with root tissue. Piscinibacter and Steroidobacter were putative keystone taxa of stem tissue. Most of the endophytic bacteria isolated from E. crassipes showed in vitro plant beneficial effects known to stimulate plant growth and induce plant resistance to stresses. This study provides new insights into the distribution and interaction of endobacteria across different compartments of E. crassipes Future study of endobacterial communities, using both culture-dependent and -independent techniques, will explore the mechanisms underlying the wide-spread adaptability of E. crassipesto various ecosystems and contribute to the development of efficient bacterial consortia for bioremediation and plant growth promotion.

14.
Front Plant Sci ; 14: 1131346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275248

RESUMO

Cannabis sativa remains under heavy legal restriction around the globe that prevents extensive investigations into agricultural applications for improving its development. This work investigates the potential of specific plant growth-promoting rhizobacteria (PGPR) to improve Cannabis cannabinoid yield through increased trichome densities on floral organs, and to determine if sub-optimal environmental conditions would affect the outcomes of PGPR presence by altering plant development and cannabinoid profiles. Here, Pseudomonas sp. or Bacillus sp. were applied to the root system either separately or in a consortium to determine the effect of this bacterial treatment on the density of stalked glandular trichomes. Further, a low nutrient regime was applied for the first half of plant development to determine if an environmental stressor interacts with the effects of the microbial treatments on stalked trichome densities. Following 8 weeks of flower development, trichome density on calyces and bracts of inflorescences were determined using microscopy. Our findings unexpectedly indicate that recommended nutrient levels were linked to a decreasing trend in trichome densities with PGPR inoculations, but a low nutrient regime coupled with PGPR treatment increased them. Cannabinoid content is partially consistent with these results, in that a low nutrient regime increased the abundance of key cannabinoids compared to recommended regimes, with Bacillus sp. inoculation linked to the greatest number of significant changes between the two nutrient regimes. Overall, this work provides insight into how PGPR presence affects Cannabis stalked trichome development and cannabinoid profiles, and how environmental stressors can affect, and even enhance, trichome densities and influence major cannabinoid production, thereby pointing towards avenues for reducing the reliance on synthetic fertilizers during plant production without compromising yield.

15.
Invest New Drugs ; 30(6): 2201-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22227828

RESUMO

Systemic chemotherapy using two-drug platinum-based regimens for the treatment of advanced stage non-small cell lung cancer (NSCLC) has largely reached a plateau of effectiveness. Accordingly, efforts to improve survival and quality of life outcomes have more recently focused on the use of molecularly targeted agents, either alone or in combination with standard of care therapies such as taxanes. The molecular chaperone heat shock protein 90 (Hsp90) represents an attractive candidate for therapeutic intervention, as its inhibition results in the simultaneous blockade of multiple oncogenic signaling cascades. Ganetespib is a non-ansamycin inhibitor of Hsp90 currently under clinical evaluation in a number of human malignancies, including NSCLC. Here we show that ganetespib potentiates the cytotoxic activity of the taxanes paclitaxel and docetaxel in NSCLC models. The combination of ganetespib with paclitaxel, docetaxel or another microtubule-targeted agent vincristine resulted in synergistic antiproliferative effects in the H1975 cell line in vitro. These benefits translated to improved efficacy in H1975 xenografts in vivo, with significantly enhanced tumor growth inhibition observed in combination with paclitaxel and tumor regressions seen with docetaxel. Notably, concurrent exposure to ganetespib and docetaxel improved antitumor activity in 5 of 6 NSCLC xenograft models examined. Our data suggest that the improved therapeutic indices are likely to be mechanistically multifactorial, including loss of pro-survival signaling and direct cell cycle effects resulting from Hsp90 modulation by ganetespib. Taken together, these findings provide preclinical evidence for the use of this combination to treat patients with advanced NSCLC.


Assuntos
Antineoplásicos/administração & dosagem , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Paclitaxel/administração & dosagem , Taxoides/administração & dosagem , Triazóis/administração & dosagem , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Combinação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos SCID , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Front Plant Sci ; 13: 938697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832221

RESUMO

Soil salinity negatively modulates plant growth and development, contributing to severe decreases in the growth and production of crops. Mucilaginibacter sp. K is a root endophytic bacterium that was previously reported by our laboratory to stimulate growth and confer salt tolerance in Arabidopsis (Arabidopsis thaliana). The main purpose of the present study is to elucidate the physiological and molecular machinery responsible for the prospective salt tolerance as imparted by Mucilaginibacter sp. K. We first report that auxin, gibberellin, and MPK6 signalings were required for strain K-induced growth promotion and salt tolerance in Arabidopsis. Then, this strain was assessed as a remediation strategy to improve maize performance under salinity stress. Under normal growth conditions, the seed vigor index, nitrogen content, and plant growth were significantly improved in maize. After NaCl exposure, strain K significantly promoted the growth of maize seedlings, ameliorated decline in chlorophyll content and reduced accretion of MDA and ROS compared with the control. The possible mechanisms involved in salt resistance in maize could be the improved activities of SOD and POD (antioxidative system) and SPS (sucrose biosynthesis), upregulated content of total soluble sugar and ABA, and reduced Na+ accumulation. These physiological changes were then confirmed by induced gene expression for ion transportation, photosynthesis, ABA biosynthesis, and carbon metabolism. In summary, these results suggest that strain K promotes plant growth through increases in photosynthesis and auxin- and MPK6-dependent pathways; it also bestows salt resistance on plants through protection against oxidative toxicity, Na+ imbalance, and osmotic stress, along with the activation of auxin-, gibberellin-, and MPK6-dependent signaling pathways. This is the first detailed report of maize growth promotion by a Mucilaginibacter sp. strain from wild plant. This strain could be used as a favorable biofertilizer and a salinity stress alleviator for maize, with further ascertainment as to its reliability of performance under field conditions and in the presence of salt stress.

17.
Front Plant Sci ; 13: 1064058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618624

RESUMO

Root exudates play a key role in mediating plant-plant and plant-rhizomicrobiome interactions, including regulating biochemical/physiological aspects of plant-associated microorganisms, to enhance host plant growth and resilience. Root exudates can act as signals to reduce the competition from neighboring plants and recruiting/choreographing a wide range of diverse rhizomicrobiome members to make the host plant a good fit with its immediate environment. Root exudate production is a dynamic and key process, but there is a limited understanding of the metabolites or metabolic pathways involved in the inter-organismal communications facilitated by them. Given the well-known symbiotic relationships between plants and associated rhizomicrobiome members, adding root exudates to microbial isolation media may allow some of the large segments of rhizomicrobiome members that are not currently culturable to be grown in vitro. This will provide new insights into how root signals orchestrate associated microbes, will benefit agricultural production in the face of challenges posed by climate change, and will help to sustainably provide food for a growing global human population.

18.
Front Plant Sci ; 13: 809906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401626

RESUMO

Soil salinity is a major abiotic stressor inhibiting plant growth and development by affecting a range of physiological processes. Plant growth promoting rhizobacteria (PGPR) are considered a sustainable option for alleviation of stress and enhancement of plant growth, yet their mode of action is complex and largely unexplored. In this study, an untargeted proteomic approach provided insights into growth and stress response mechanisms elicited in soybean plants by Rhizobium sp. SL42 and Hydrogenophaga sp. SL48 and co-inoculated with Bradyrhizobium japonicum 532C. The plants were grown under optimal and salt-stressed conditions up to their mid-vegetative stage; shoot growth variables were increased in the bacteria-treated plants. Shotgun proteomics of soybean leaf tissue revealed that a number of proteins related to plant growth and stress tolerance were modulated in the bacterial inoculation treatments. Several key proteins involved in major metabolic pathways of photosynthesis, respiration, and photorespiration were upregulated. These include photosystem I psaK, Rubisco subunits, glyceraldehyde-3-phosphate dehydrogenase, succinate dehydrogenase, and glycine decarboxylase. Similarly, stress response proteins such as catalase and glutathione S-transferase (antioxidants), proline-rich precursor protein (osmolyte), and NADP-dependent malic enzyme (linked to ABA signaling) were increased under salt stress. The functions of proteins related to plant growth and stress adaptation led to an expanded understanding of plant-microbe interactions. These findings suggest that the PGPR strains regulated proteome expression in soybean leaves through multiple signaling pathways, thereby inducing salinity tolerance, and improving plant growth in the presence of this abiotic stress challenge. Data are available via ProteomeXchange with identifier PXD025596.

19.
Front Plant Sci ; 13: 1030985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438103

RESUMO

Salt stress is a major threat to modern agriculture, significantly affecting plant growth and yield, and causing substantial economic losses. At this crucial time of increasing climate change conditions, soil salinity will continue to develop and become an even more serious challenge to crop agriculture. Hence, there is a pressing need for sustainable techniques in agricultural production that could meet the dual challenges of crop productivity and environmental instability. The use of biostimulants in agricultural production has greatly influenced plant health and global food production. In particular, the application of bioactive materials produced by beneficial microbes is becoming a common practice in agriculture and provides numerous benefits to plant growth and resistance to stressful conditions. In this research two biostimulants; a type of plant secondary metabolite (flavonoids) and a microbe-based material (CFS: Cell-Free Supernatant) containing active compounds secreted by a novel bacterial strain isolated from Amphecarpaea bracteata root nodules (Devosia sp - SL43), have been utilized to improve the growth and stress resistance of two major oil seed crops; canola and soybean, under optimal and salt stress conditions. Our findings suggested significant improvements in crop growth of canola and soybean following the application of both biostimulants. Under optimal growth conditions, soybean growth was significantly affected by foliar spray of flavonoids with increases in shoot fresh and dry weight, and leaf area, by 91, 99.5, and 73%, respectively. However, soybean growth was unaffected by flavonoids under salt stress. In contrast, CFS with a meaningful capacity to mitigate the negative effects of salinity stress improved soybean shoot fresh biomass, dry biomass, and leaf area by 128, 163 and 194%, respectively, under salt stress conditions. Canola was less responsive to both biostimulants, except for canola root variables which were substantially improved by flavonoid spray. Since this was the first assessment of these materials as foliar sprays, we strongly encourage further experimentation to confirm the findings reported here and to determine the full range of applicability of each of these potential technologies.

20.
Front Plant Sci ; 13: 1079180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618613

RESUMO

Exposure to unfavorable conditions is becoming more frequent for plants due to climate change, posing a threat to global food security. Stressful temperature, as a major environmental factor, adversely affects plant growth and development, and consequently agricultural production. Hence, development of sustainable approaches to assist plants in dealing with environmental challenges is of great importance. Compatible plant-microbe interactions and signal molecules produced within these interactions, such as bacteriocins, could be promising approaches to managing the impacts of abiotic stresses on crops. Although the use of bacteriocins in food preservation is widespread, only a small number of studies have examined their potential in agriculture. Therefore, we studied the effect of three concentrations of Thuricin17 (Th17), a plant growth-promoting rhizobacterial signal molecule produced by Bacillus thuringiensis, on germination and vegetative growth of canola (Brassica napus L.) under stressful temperatures. Canola responded positively to treatment with the bacterial signal molecule under stressful temperatures. Treatment with 10 -9 M Th17 (Thu2) was found to significantly enhance germination rate, seed vigor index, radical and shoot length and seedling fresh weight under low temperature, and this treatment reduced germination time which would be an asset for higher latitude, short growing season climates. Likewise, Thu2 was able to alleviate the adverse effects of high temperature on germination and seed vigor. Regarding vegetative growth, interestingly, moderate high temperature with the assistance of the compound caused more growth and development than the control conditions. Conversely, low temperature negatively affected plant growth, and Th17 did not help overcome this effect. Specifically, the application of 10 -9 (Thu2) and 10 -11 M (Thu3) Th17 had a stimulatory effect on height, leaf area and biomass accumulation under above-optimal conditions, which could be attributed to modifications of below-ground structures, including root length, root surface, root volume and root diameter, as well as photosynthetic rate. However, no significant effects were observed under optimal conditions for almost all measured variables. Therefore, the signal compound tends to have a stimulatory impact at stressful temperatures but not under optimal conditions. Hence, supplementation with Th17 would have the potential as a plant growth promoter under stressed circumstances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA