Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 291(40): 21296-21321, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27519411

RESUMO

Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42-210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42-210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42-210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42-210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42-210 to ISCU.


Assuntos
Liases de Carbono-Enxofre/química , Proteínas de Ligação ao Ferro/química , Proteínas Reguladoras de Ferro/química , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Simulação de Dinâmica Molecular , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Frataxina
2.
J Biol Chem ; 291(19): 10378-98, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26941001

RESUMO

The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24 Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Cristalografia por Raios X , Proteínas de Ligação ao Ferro/química , Proteínas Ferro-Enxofre/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Frataxina
3.
J Biol Chem ; 288(6): 4116-27, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23269675

RESUMO

Friedreich ataxia is an early-onset multisystemic disease linked to a variety of molecular defects in the nuclear gene FRDA. This gene normally encodes the iron-binding protein frataxin (FXN), which is critical for mitochondrial iron metabolism, global cellular iron homeostasis, and antioxidant protection. In most Friedreich ataxia patients, a large GAA-repeat expansion is present within the first intron of both FRDA alleles, that results in transcriptional silencing ultimately leading to insufficient levels of FXN protein in the mitochondrial matrix and probably other cellular compartments. The lack of FXN in turn impairs incorporation of iron into iron-sulfur cluster and heme cofactors, causing widespread enzymatic deficits and oxidative damage catalyzed by excess labile iron. In a minority of patients, a typical GAA expansion is present in only one FRDA allele, whereas a missense mutation is found in the other allele. Although it is known that the disease course for these patients can be as severe as for patients with two expanded FRDA alleles, the underlying pathophysiological mechanisms are not understood. Human cells normally contain two major mitochondrial isoforms of FXN (FXN(42-210) and FXN(81-210)) that have different biochemical properties and functional roles. Using cell-free systems and different cellular models, we show that two of the most clinically severe FXN point mutations, I154F and W155R, have unique direct and indirect effects on the stability, biogenesis, or catalytic activity of FXN(42-210) and FXN(81-210) under physiological conditions. Our data indicate that frataxin point mutations have complex biochemical effects that synergistically contribute to the pathophysiology of Friedreich ataxia.


Assuntos
Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Alelos , Substituição de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Sistema Livre de Células , Chlorocebus aethiops , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Humanos , Proteínas de Ligação ao Ferro/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Expansão das Repetições de Trinucleotídeos , Frataxina
4.
NPJ Regen Med ; 7(1): 48, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085325

RESUMO

Hereditary muscle diseases are disabling disorders lacking effective treatments. UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) myopathy (GNEM) is an autosomal recessive distal myopathy with rimmed vacuoles typically manifesting in late adolescence/early adulthood. GNE encodes the rate-limiting enzyme in sialic acid biosynthesis, which is necessary for the proper function of numerous biological processes. Outside of the causative gene, very little is known about the mechanisms contributing to the development of GNE myopathy. In the present study, we aimed to address this knowledge gap by querying the underlying mechanisms of GNE myopathy using a patient-derived induced pluripotent stem-cell (iPSC) model. Control and patient-specific iPSCs were differentiated down a skeletal muscle lineage, whereby patient-derived GNEM iPSC clones were able to recapitulate key characteristics of the human pathology and further demonstrated defects in myogenic progression. Single-cell RNA sequencing time course studies revealed clear differences between control and GNEM iPSC-derived muscle precursor cells (iMPCs), while pathway studies implicated altered stress and autophagy signaling in GNEM iMPCs. Treatment of GNEM patient-derived iMPCs with an autophagy activator improved myogenic differentiation. In summary, we report an in vitro, iPSC-based model of GNE myopathy and implicate defective myogenesis as a contributing mechanism to the etiology of GNE myopathy.

5.
J Biol Chem ; 285(49): 38486-501, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20889968

RESUMO

Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by insufficient expression of frataxin (FXN), a mitochondrial iron-binding protein required for Fe-S cluster assembly. The development of treatments to increase FXN levels in FRDA requires elucidation of the steps involved in the biogenesis of functional FXN. The FXN mRNA is translated to a precursor polypeptide that is transported to the mitochondrial matrix and processed to at least two forms, FXN(42-210) and FXN(81-210). Previous reports suggested that FXN(42-210) is a transient processing intermediate, whereas FXN(81-210) represents the mature protein. However, we find that both FXN(42-210) and FXN(81-210) are present in control cell lines and tissues at steady-state, and that FXN(42-210) is consistently more depleted than FXN(81-210) in samples from FRDA patients. Moreover, FXN(42-210) and FXN(81-210) have strikingly different biochemical properties. A shorter N terminus correlates with monomeric configuration, labile iron binding, and dynamic contacts with components of the Fe-S cluster biosynthetic machinery, i.e. the sulfur donor complex NFS1·ISD11 and the scaffold ISCU. Conversely, a longer N terminus correlates with the ability to oligomerize, store iron, and form stable contacts with NFS1·ISD11 and ISCU. Monomeric FXN(81-210) donates Fe(2+) for Fe-S cluster assembly on ISCU, whereas oligomeric FXN(42-210) donates either Fe(2+) or Fe(3+). These functionally distinct FXN isoforms seem capable to ensure incremental rates of Fe-S cluster synthesis from different mitochondrial iron pools. We suggest that the levels of both isoforms are relevant to FRDA pathophysiology and that the FXN(81-210)/FXN(42-210) molar ratio should provide a useful parameter to optimize FXN augmentation and replacement therapies.


Assuntos
Ataxia de Friedreich/metabolismo , Regulação da Expressão Gênica , Proteínas de Ligação ao Ferro/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Precursores de Proteínas/biossíntese , Adolescente , Adulto , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Linhagem Celular Transformada , Criança , Feminino , Ataxia de Friedreich/genética , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Masculino , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Precursores de Proteínas/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frataxina
6.
J Biol Chem ; 284(33): 21971-21980, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19491103

RESUMO

Mitochondrial biosynthesis of iron-sulfur clusters (ISCs) is a vital process involving the delivery of elemental iron and sulfur to a scaffold protein via molecular interactions that are still poorly defined. Analysis of highly conserved components of the yeast ISC assembly machinery shows that the iron-chaperone, Yfh1, and the sulfur-donor complex, Nfs1-Isd11, directly bind to each other. This interaction is mediated by direct Yfh1-Isd11 contacts. Moreover, both Yfh1 and Nfs1-Isd11 can directly bind to the scaffold, Isu1. Binding of Yfh1 to Nfs1-Isd11 or Isu1 requires oligomerization of Yfh1 and can occur in an iron-independent manner. However, more stable contacts are formed when Yfh1 oligomerization is normally coupled with the binding and oxidation of Fe2+. Our observations challenge the view that iron delivery for ISC synthesis is mediated by Fe2+-loaded monomeric Yfh1. Rather, we find that the iron oxidation-driven oligomerization of Yfh1 promotes the assembly of stable multicomponent complexes in which the iron donor and the sulfur donor simultaneously interact with each other as well as with the scaffold. Moreover, the ability to store ferric iron enables oligomeric Yfh1 to adjust iron release depending on the presence of Isu1 and the availability of elemental sulfur and reducing equivalents. In contrast, the use of anaerobic conditions that prevent Yfh1 oligomerization results in inhibition of ISC assembly on Isu1. These findings suggest that iron-dependent oligomerization is a mechanism by which the iron donor promotes assembly of the core machinery for mitochondrial ISC synthesis.


Assuntos
Proteínas de Ligação ao Ferro/química , Proteínas Ferro-Enxofre/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiologia , Sulfurtransferases/química , Cromatografia em Gel , DNA/química , Relação Dose-Resposta a Droga , Regulação Fúngica da Expressão Gênica , Ferro/química , Modelos Biológicos , Ligação Proteica , Fatores de Tempo , Frataxina
7.
J Biol Chem ; 283(46): 31500-10, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18784075

RESUMO

Defects in frataxin result in Friedreich ataxia, a genetic disease characterized by early onset of neurodegeneration, cardiomyopathy, and diabetes. Frataxin is a conserved mitochondrial protein that controls iron needed for iron-sulfur cluster assembly and heme synthesis and also detoxifies excess iron. Studies in vitro have shown that either monomeric or oligomeric frataxin delivers iron to other proteins, whereas ferritin-like frataxin particles convert redox-active iron to an inert mineral. We have investigated how these different forms of frataxin are regulated in vivo. In Saccharomyces cerevisiae, only monomeric yeast frataxin (Yfh1) was detected in unstressed cells when mitochondrial iron uptake was maintained at a steady, low nanomolar level. Increments in mitochondrial iron uptake induced stepwise assembly of Yfh1 species ranging from trimer to > or = 24-mer, independent of interactions between Yfh1 and its major iron-binding partners, Isu1/Nfs1 or aconitase. The rate-limiting step in Yfh1 assembly was a structural transition that preceded conversion of monomer to trimer. This step was induced, independently or synergistically, by mitochondrial iron increments, overexpression of wild type Yfh1 monomer, mutations that stabilize Yfh1 trimer, or heat stress. Faster assembly kinetics correlated with reduced oxidative damage and higher levels of aconitase activity, respiratory capacity, and cell survival. However, deregulation of Yfh1 assembly resulted in Yfh1 aggregation, aconitase sequestration, and mitochondrial DNA depletion. The data suggest that Yfh1 assembly responds to dynamic changes in mitochondrial iron uptake or stress exposure in a highly controlled fashion and that this may enable frataxin to simultaneously promote respiratory function and stress tolerance.


Assuntos
Resposta ao Choque Térmico , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , DNA Mitocondrial/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Modelos Moleculares , Mutação/genética , Ligação Proteica , Carbonilação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA