Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35724423

RESUMO

Most humans carry mites in the hair follicles of their skin for their entire lives. Follicular mites are the only metazoans tha continuously live on humans. We propose that Demodex folliculorum (Acari) represents a transitional stage from a host-injuring obligate parasite to an obligate symbiont. Here, we describe the profound impact of this transition on the genome and physiology of the mite. Genome sequencing revealed that the permanent host association of D. folliculorum led to an extensive genome reduction through relaxed selection and genetic drift, resulting in the smallest number of protein-coding genes yet identified among panarthropods. Confocal microscopy revealed that this gene loss coincided with an extreme reduction in the number of cells. Single uninucleate muscle cells are sufficient to operate each of the three segments that form each walking leg. While it has been assumed that the reduction of the cell number in parasites starts early in development, we identified a greater total number of cells in the last developmental stage (nymph) than in the terminal adult stage, suggesting that reduction starts at the adult or ultimate stage of development. This is the first evolutionary step in an arthropod species adopting a reductive, parasitic or endosymbiotic lifestyle. Somatic nuclei show underreplication at the diploid stage. Novel eye structures or photoreceptors as well as a unique human host melatonin-guided day/night rhythm are proposed for the first time. The loss of DNA repair genes coupled with extreme endogamy might have set this mite species on an evolutionary dead-end trajectory.

2.
J Cell Sci ; 130(12): 2018-2025, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28455412

RESUMO

Amphiregulin (AREG)-/- mice demonstrate impaired mammary development and form only rudimentary ductal epithelial trees; however, AREG-/- glands are still capable of undergoing alveologenesis and lactogenesis during pregnancy. Transplantation of AREG-/- mammary epithelial cells into cleared mouse mammary fat pads results in a diminished capacity for epithelial growth (∼15%) as compared to that of wild-type mammary epithelial cells. To determine whether estrogen receptor α (ERα, also known as ESR1) and/or AREG signaling were necessary for non-mammary cell redirection, we inoculated either ERα-/- or AREG-/- mammary cells with non-mammary progenitor cells (WAP-Cre/Rosa26LacZ+ male testicular cells or GFP-positive embryonic neuronal stem cells). ERα-/- cells possessed a limited ability to grow or reprogram non-mammary cells in transplanted mammary fat pads. AREG-/- mammary cells were capable of redirecting both types of non-mammary cell populations to mammary phenotypes in regenerating mammary outgrowths. Transplantation of fragments from AREG-reprogrammed chimeric outgrowths resulted in secondary outgrowths in six out of ten fat pads, demonstrating the self-renewing capacity of the redirected non-mammary cells to contribute new progeny to chimeric outgrowths. Nestin was detected at the leading edges of developing alveoli, suggesting that its expression may be essential for lobular expansion.


Assuntos
Anfirregulina/genética , Linhagem da Célula , Reprogramação Celular , Células Epiteliais/citologia , Transdução de Sinais , Animais , Diferenciação Celular , Proliferação de Células , Transplante de Células , Córtex Cerebral/embriologia , Células-Tronco Embrionárias/citologia , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Gravidez , Espermatozoides/metabolismo , Testículo/metabolismo
3.
J Mammary Gland Biol Neoplasia ; 23(1-2): 1-3, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29644495

RESUMO

The presence of long-lived lineage restricted progenitor and multipotent progenitor cells in adult mouse mammary gland for cancer development is compelling. Mammary cancers are phenotypically diverse This might be explained by transformation of long-lived, lineage-limited progenitor subpopulations. Mammary multipotent epithelial stem cells and their environmental niches must be considered, since their niche(s), once empty might be occupied by lineage-limited progenitors that are proximal. The existence of premalignant mammary populationst that manifest characteristics of lineage limitation argues strongly for this proposition.


Assuntos
Glândulas Mamárias Animais/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Epiteliais/citologia , Feminino , Camundongos
4.
Mol Biol Evol ; 34(9): 2271-2284, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505307

RESUMO

Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors.


Assuntos
Borboletas/genética , Opsinas/genética , Animais , Borboletas/metabolismo , Visão de Cores/genética , Evolução Molecular , Duplicação Gênica/genética , Variação Genética , Cinurenina/análogos & derivados , Cinurenina/genética , Cinurenina/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia , Pigmentação/genética , Retina/metabolismo , Opsinas de Bastonetes/genética , Análise de Sequência de DNA/métodos , Caracteres Sexuais , Asas de Animais
5.
Mol Biol Evol ; 33(1): 79-92, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26371082

RESUMO

Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.


Assuntos
Borboletas/genética , Borboletas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Opsinas/genética , Transcriptoma/genética , Animais , Olho/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Masculino , Opsinas/metabolismo , Fenótipo , Pigmentação , Caracteres Sexuais
6.
J Mammary Gland Biol Neoplasia ; 21(1-2): 21-3, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27255141

RESUMO

In a recent paper (Rios et al. Nat Commun. 7:11400, 2016), it was reported that polyploid cells are frequent in lactating mammary tissues. This phenomenon was observed in mammary tissue sampled from five separate mammalian species. According to that report, these binucleated cells occur late in pregnancy and early in lactation. Unfortunately, this paper did not mention a number of earlier observations and findings that remain pertinent to this day (Banerjee et al. Life sciences Pt 2: Biochemistry, general and molecular biology. 10(15):867-77, 1971; Banerjee MR, Wagner JE. Biochem. Biophys. Res. Commun. 49(2):480-7, 1972). In these classical experiments, the authors demonstrated in vivo that DNA synthesis continued without commensurate cell division during late pregnancy and lactation, and that this DNA synthesis was imperative for functional differentiation of the mammary epithelium. Later studies showed that DNA synthesis was indispensable to the induction of milk protein production in explant cultures of mammary tissue from unprimed, nulliparous mice. This dependence on DNA synthesis in mammary explant cultures stimulated by lactogenic hormones was found to be dispensable following a single pregnancy. The absolute requirement for DNA synthesis in nulliparous mouse mammary explants stimulated to synthesize milk protein in vitro has remained unexplained, as has the need for DNA synthesis prior to the onset of lactation. From a historical perspective, it is more likely that binuclear secretory cells in the lactating mammary gland are a consequence of the DNA synthesis requirement for lactation, rather than an essential element.


Assuntos
Replicação do DNA , Células Epiteliais/citologia , Lactação/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Modelos Biológicos , Poliploidia , Animais , Células Epiteliais/metabolismo , Feminino , Humanos , Mamíferos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Especificidade da Espécie
7.
Mol Biol Evol ; 32(4): 888-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534027

RESUMO

Epigenetic marks such as DNA methylation play important biological roles in gene expression regulation and cellular differentiation during development. To examine whether DNA methylation patterns are potentially associated with naturally occurring phenotypic differences, we examined genome-wide DNA methylation within Gasterosteus aculeatus, using reduced representation bisulfite sequencing. First, we identified highly methylated regions of the stickleback genome, finding such regions to be located predominantly within genes, and associated with genes functioning in metabolism and biosynthetic processes, cell adhesion, signaling pathways, and blood vessel development. Next, we identified putative differentially methylated regions (DMRs) of the genome between complete and low lateral plate morphs of G. aculeatus. We detected 77 DMRs that were mainly located in intergenic regions. Annotations of genes associated with these DMRs revealed potential functions in a number of known divergent adaptive phenotypes between G. aculeatus ecotypes, including cardiovascular development, growth, and neuromuscular development.


Assuntos
Metilação de DNA , Genoma , Fenótipo , Smegmamorpha/genética , Animais , Sequência de Bases , Adesão Celular/genética , Feminino , Genes , Crescimento e Desenvolvimento/genética , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Transdução de Sinais/genética
8.
J Cell Sci ; 127(Pt 1): 27-32, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24190884

RESUMO

We have previously shown that non-mammary and tumorigenic cells can respond to the signals of the mammary niche and alter their cell fate to that of mammary epithelial progenitor cells. Here we tested the hypothesis that paracrine signals from mammary epithelial cells expressing progesterone receptor (PR) are dispensable for redirection of testicular cells, and that re-directed wild-type testicular-derived mammary cells can rescue lobulogenesis of PR-null mammary epithelium by paracrine signaling during pregnancy. We injected PR-null epithelial cells mixed with testicular cells from wild-type adult male mice into cleared fat-pads of recipient mice. The testicular cells were redirected in vivo to mammary epithelial cell fate during regeneration of the mammary epithelium, and persisted in second-generation outgrowths. In the process, the redirected testicular cells rescued the developmentally deficient PR-null cells, signaling them through the paracrine factor RANKL to produce alveolar secretory structures during pregnancy. This is the first demonstration that paracrine signaling required for alveolar development is not required for cellular reprogramming in the mammary gland, and that reprogrammed testicular cells can provide paracrine signals to the surrounding mammary epithelium.


Assuntos
Reprogramação Celular/genética , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Comunicação Parácrina/genética , Receptores de Progesterona/genética , Túbulos Seminíferos/citologia , Tecido Adiposo , Animais , Diferenciação Celular , Células Epiteliais/metabolismo , Células Epiteliais/transplante , Feminino , Expressão Gênica , Injeções , Masculino , Glândulas Mamárias Animais/metabolismo , Camundongos , Gravidez , Progesterona/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Receptores de Progesterona/deficiência , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/transplante , Transdução de Sinais
9.
J Mammary Gland Biol Neoplasia ; 20(1-2): 93-101, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26362796

RESUMO

Mammotropic hormones and growth factors play a very important role in mammary growth and differentiation. Here, hormones including Estrogen, Progesterone, Prolactin, their cognate receptors, and the growth factor Amphiregulin, are tested with respect to their roles in signaling non-mammary cells from the mouse to redirect to mammary epithelial cell fate(s). This was done in the context of glandular regeneration in pubertal athymic female mice. Our previous studies demonstrated that mammary stem cell niches are recapitulated during gland regeneration in vivo. During this process, cells of exogenous origin cooperate with mammary epithelial cells to form mammary stem cell niches and thus respond to normal developmental signals. In all cases tested with the possible exception of estrogen receptor alpha (ER-α), hormone signaling is dispensable for non-mammary cells to undertake mammary epithelial cell fate(s), proliferate, and contribute progeny to chimeric mammary outgrowths. Importantly, redirected non-mammary cell progeny, regardless of their source, have the ability to self-renew and contribute offspring to secondary mammary outgrowths derived from transplanted chimeric mammary fragments; thus suggesting that some of these cells are capable of mammary stem cell/progenitor functions.


Assuntos
Diferenciação Celular , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Anfirregulina/metabolismo , Animais , Proliferação de Células , Estrogênios/metabolismo , Camundongos , Progesterona/metabolismo , Prolactina/metabolismo , Receptores de Progesterona/metabolismo , Células-Tronco/fisiologia
10.
Semin Cell Dev Biol ; 23(5): 591-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22430755

RESUMO

The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution. These facts support the contention that mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue, to produce dispersed cells results in the desecration of the protection afforded by the "niche" and leads to a reduced capacity of dispersed epithelial cells (in terms of the number transplanted) to recapitulate complete functional mammary structures. Our studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary cells, including mouse and human cancer cells, may be sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells.


Assuntos
Reprogramação Celular , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Neoplasias/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
11.
Breast Cancer Res ; 16(1): 302, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25927296

RESUMO

Extracellular matrix proteins from embryonic mesenchyme have a normalizing effect on cancer cells in vitro and slow tumor growth in vivo. This concept is suggestive of a new method for controlling the growth and spread of existing cancer cells in situ and indicates the possibility that extracellular proteins and/or embryonic mesenchymal fibroblasts may represent a fertile subject for study of new anti-cancer treatments.


Assuntos
Biglicano/química , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Matriz Extracelular/metabolismo , Glândulas Mamárias Animais/embriologia , Mesoderma/patologia , Animais , Feminino , Humanos
12.
Mol Cancer ; 12: 79, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23866257

RESUMO

BACKGROUND: The canonical milk-transmitted mouse mammary tumor virus (MMTV) of C3H mice (C3H-MMTV) rapidly induces tumors in 90% of infected animals by 8 months of age. Pro-viral insertions of C3H-MMTV into genomic DNA results in the overexpression of common core insertion site (CIS) genes, including Wnt1/10b, Rspo2, and Fgf3. Conversely, infection by either the endogenous Mtv-1 virus (in C3Hf) or the exogenous nodule-inducing virus (NIV) (in Balb/c NIV) induces premalignant mammary lesions and tumors with reduced incidence and longer latency than C3H-MMTV. Here, we asked whether Mtv-1/NIV affected the expression of core CIS genes. FINDINGS: We confirmed the presence of active virus in Mtv-1/NIV infected tissues and using quantitative reverse transcription PCR (qRT-PCR) found that Mtv-1/NIV induced neoplasms (tumors and hyperplasia) commonly expressed the core CIS genes Wnt1, Wnt10b, Rspo2, Fgf3. CONCLUSIONS: These results underscore the importance of core CIS gene expression in the early events leading to MMTV-induced mammary tumor initiation regardless of the viral variant.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Animais , Feminino , Hiperplasia , Neoplasias Mamárias Experimentais/virologia , Camundongos , Camundongos Endogâmicos BALB C
13.
Mol Ecol ; 21(13): 3293-307, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22571504

RESUMO

The cactophilic fly Drosophila mojavensis exhibits considerable intraspecific genetic structure across allopatric geographic regions and shows associations with different host cactus species across its range. The divergence between these populations has been studied for more than 60years, yet their exact historical relationships have not been resolved. We analysed sequence data from 15 intronic X-linked loci across populations from Baja California, mainland Sonora-Arizona and Mojave Desert regions under an isolation-with-migration model to assess multiple scenarios of divergence. We also compared the results with a pre-existing sequence data set of eight autosomal loci. We derived a population tree with Baja California placed at its base and link their isolation to Pleistocene climatic oscillations. Our estimates suggest the Baja California population diverged from an ancestral Mojave Desert/mainland Sonora-Arizona group around 230,000-270,000years ago, while the split between the Mojave Desert and mainland Sonora-Arizona populations occurred one glacial cycle later, 117,000-135,000years ago. Although we found these three populations to be effectively allopatric, model ranking could not rule out the possibility of a low level of gene flow between two of them. Finally, the Mojave Desert population showed a small effective population size, consistent with a historical population bottleneck. We show that model-based inference from multiple loci can provide accurate information on the historical relationships of closely related groups allowing us to set into historical context a classic system of incipient ecological speciation.


Assuntos
Drosophila/genética , Modelos Genéticos , Filogeografia , Animais , Arizona , Funções Verossimilhança , México , Dados de Sequência Molecular , Análise de Sequência de DNA , Cromossomo X/genética
14.
Dev Dyn ; 240(3): 674-81, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21337465

RESUMO

Prominin-1 (Prom1) is recognized as a stem cell marker in several tissues, including blood, neuroepithelium, and gut, and in human and mouse embryos and many cancers. Although Prom1 is routinely used as a marker for isolating stem cells, its biological function remains unclear. Here we use a knockout model to investigate the role of Prom1 in the mammary gland. We demonstrate that complete loss of Prom1 does not affect the regenerative capacity of the mammary epithelium. Surprisingly, we also show that in the absence of Prom1, mammary glands have reduced ductal branching, and an increased ratio of luminal to basal cells. The effects of Prom1 loss in the mammary gland are associated with decreased expression of prolactin receptor and matrix metalloproteinase-3. These experiments reveal a novel, functional role for Prom1 that is not related to stem cell activity, and demonstrate the importance of tissue-specific characterization of putative stem cell markers.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/fisiologia , Morfogênese/fisiologia , Peptídeos/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Antígeno AC133 , Animais , Antígenos CD/genética , Feminino , Citometria de Fluxo , Glicoproteínas/genética , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Mutantes , Camundongos Nus , Morfogênese/genética , Peptídeos/genética , Regeneração/genética
15.
Gene Expr ; 15(3): 133-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22268295

RESUMO

Both mouse and human mammary glands contain stem/progenitor functional hierarchies that are maintained through the entire life span of the animal. Cells with such functional capacities are potential candidates for tumorigenesis as they are long lived, multipotent, and self-renewing. Using the mouse as a model, this review will discuss what is known about the mammary stem/progenitor hierarchy, the evidence that particular progenitor functions are susceptible to tumorigenic stimuli, how these findings in mice are relevant to the disease in humans, and the role of the local microenvironment in controlling tumorigenesis.


Assuntos
Neoplasias da Mama/patologia , Células Epiteliais/fisiologia , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , Células-Tronco/fisiologia , Animais , Neoplasias da Mama/fisiopatologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , Células Epiteliais/citologia , Feminino , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Nicho de Células-Tronco , Células-Tronco/citologia , Microambiente Tumoral
16.
Exp Cell Res ; 316(3): 422-32, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19913532

RESUMO

Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG(-/-) mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glândulas Mamárias Animais/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Anfirregulina , Animais , Linhagem Celular Transformada , Proliferação de Células , Família de Proteínas EGF , Células Epiteliais/enzimologia , Feminino , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção
17.
Proc Natl Acad Sci U S A ; 105(39): 14891-6, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18809919

RESUMO

A fundamental issue in stem cell biology is whether adult somatic stem cells are capable of accessing alternate tissue sites and continue functioning as stem cells in the new microenvironment. To address this issue relative to neurogenic stem cells in the mouse mammary gland microenvironment, we mixed wild-type mammary epithelial cells (MECs) with bona fide neural stem cells (NSCs) isolated from WAP-Cre/Rosa26R mice and inoculated them into cleared fat pads of immunocompromised females. Hosts were bred 6-8 weeks later and examined postinvolution. This allowed for mammary tissue growth, transient activation of the WAP-Cre gene, recombination, and constitutive expression of LacZ. The NSCs and their progeny contributed to mammary epithelial growth during ductal morphogenesis, and the Rosa26-LacZ reporter gene was activated by WAP-Cre expression during pregnancy. Some NSC-derived LacZ(+) cells expressed mammary-specific functions, including milk protein synthesis, whereas others adopted myoepithelial cell fates. Thus, NSCs and their progeny enter mammary epithelium-specific niches and adopt the function of similarly endowed mammary cells. This result supports the conclusion that tissue-specific signals emanating from the stroma and from the differentiated somatic cells of the mouse mammary gland can redirect the NSCs to produce cellular progeny committed to MEC fates.


Assuntos
Diferenciação Celular , Glândulas Mamárias Animais/crescimento & desenvolvimento , Células-Tronco Multipotentes/citologia , Neurônios/citologia , Animais , Ciclo Celular , Diferenciação Celular/genética , Células Epiteliais/citologia , Feminino , Genes Reporter , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Transgênicos , Proteínas do Leite/genética , Morfogênese , Gravidez , Proteínas/genética , RNA não Traduzido , Transplante de Células-Tronco , beta-Galactosidase/genética
18.
Breast Cancer Res ; 12(5): R86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20964820

RESUMO

INTRODUCTION: During selective segregation of DNA, a cell asymmetrically divides and retains its template DNA. Asymmetric division yields daughter cells whose genome reflects that of the parents', simultaneously protecting the parental cell from genetic errors that may occur during DNA replication. We hypothesized that long-lived epithelial cells are present in immortal, premalignant cell populations, undergo asymmetric division, retain their template DNA strands, and cycle both during allometric growth and during pregnancy. METHODS: The glands of 3-week old immune competent Balb/C female mice were utilized intact or cleared of host epithelium and implanted with ductal-limited, lobule-limited, or alveolar-ductal progenitor cells derived from COMMA-D1 pre-malignant epithelial cells. 5-bromo-2-deoxyuridine (5-BrdU) was administered to identify those cells which retain their template DNA. Nulliparous mice were then either injected with [(3)H]-thymidine ((3)H-TdR) to distinguish 5-BrdU-label retaining cells that enter the cell cycle and euthanized, or mated, injected with (3)H-TdR, and euthanized at various days post-coitus. Sections were stained for estrogen receptor-α(ER-α) or progesterone receptor (PR) via immunohistochemistry. Cells labelled with both 5-BrdU and (3)H-TdR were indicative of label-retaining epithelial cells (LREC). RESULTS: Cells that retained a 5-BrdU label and cells labelled with [(3)H]-thymidine were found in all mice and were typically detected along the branching epithelium of mature mouse mammary glands. Cells containing double-labelled nuclei (LREC) were found in the intact mammary gland of both pregnant and nulliparous mice, and in mammary glands implanted with pre-malignant cells. Double-labelled cells ((3)H-TdR/5-BrdU) represent a small portion of cells in the mammary gland that cycle and retain their template DNA (5-BrdU). Some label-retaining cells were also ER-α or PR positive. LRECs distributed their second label ((3)H-TdR) to daughter cells; and this effect persisted during pregnancy. LRECs, and small focal hyperplasia, were found in all immortalized premalignant mammary implant groups. CONCLUSIONS: The results indicate that a subpopulation of long-lived, label-retaining epithelial cells (LRECs) is present in immortal premalignant cell populations. These LRECs persist during pregnancy, retain their original DNA, and a small percentage express ER-α and PR. We speculate that LRECs in premalignant hyperplasia represent the long-lived (memory) cells that maintain these populations indefinitely.


Assuntos
Divisão Celular Assimétrica/genética , Replicação do DNA , DNA/biossíntese , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Animais , Autorradiografia , Bromodesoxiuridina , Células Epiteliais/citologia , Receptor alfa de Estrogênio/análise , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Lesões Pré-Cancerosas , Gravidez , Receptores de Progesterona/análise , Células-Tronco/citologia , Células-Tronco/metabolismo , Moldes Genéticos , Timidina , Trítio
19.
Oncotarget ; 11(2): 161-174, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32010429

RESUMO

One major foundation of cancer etiology is the process of clonal expansion. The mechanisms underlying the complex process of a single cell leading to a clonal dominant tumor, are poorly understood. Our study aims to analyze mitochondrial DNA (mtDNA) for somatic single nucleotide polymorphisms (SNPs) variants, to determine if they are conserved throughout clonal expansion in mammary tissues and tumors. To test this hypothesis, we took advantage of a mouse mammary tumor virus (MMTV)-infected mouse model (CzechII). CzechII mouse mtDNA was extracted, from snap-frozen normal, hyperplastic, and tumor mammary epithelial outgrowth fragments. Next generation deep sequencing was used to determine if mtDNA "de novo" SNP variants are conserved during serial transplantation of both normal and neoplastic mammary clones. Our results support the conclusion that mtDNA "de novo" SNP variants are selected for and maintained during serial passaging of clonal phenotypically heterogeneous normal cellular populations; neoplastic cellular populations; metastatic clonal cellular populations and in individual tumor transplants, grown from the original metastatic tumor. In one case, a mammary tumor arising from a single cell, within a clonal hyperplastic outgrowth, contained only mtDNA copies, harboring a deleterious "de novo" SNP variant, suggesting that only one mtDNA template may act as a template for all mtDNA copies regardless of cell phenotype. This process has been attributed to "heteroplasmic-shifting". A process that is thought to result from selective pressure and may be responsible for pathogenic mutated mtDNA copies becoming homogeneous in clonal dominant oncogenic tissues.

20.
Oncotarget ; 11(30): 2919-2929, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32774772

RESUMO

The influence of breast cancer cells on normal cells of the microenvironment, such as fibroblasts and macrophages, has been heavily studied but the influence of normal epithelial cells on breast cancer cells has not. Here using in vivo and in vitro models we demonstrate the impact epithelial cells and the mammary microenvironment can exert on breast cancer cells. Under specific conditions, signals that originate in epithelial cells can induce phenotypic and genotypic changes in cancer cells. We have termed this phenomenon "cancer cell redirection." Once breast cancer cells are redirected, either in vivo or in vitro, they lose their tumor forming capacity and undergo a genetic expression profile shift away from one that supports a cancer profile towards one that supports a non-tumorigenic epithelial profile. These findings indicate that epithelial cells and the normal microenvironment influence breast cancer cells and that under certain circumstances restrict proliferation of tumorigenic cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA