Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Death Stud ; 46(2): 381-390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32098575

RESUMO

We investigated how death attitudes and experience relate to perspectives on advance care planning (ACP) in young adulthood, and whether attending a Death over Dinner event affects perspectives on ACP. Participants (N = 109) were assigned to a Death over Dinner or waitlist control condition, completing pretest and post-test measures. Higher Death Rejection and having more Experience with Death predicted Reservations about ACP. Participation in a Death over Dinner decreased Reservations toward ACP compared to the control group. Death over Dinner appears to be useful in ameliorating reservations toward ACP without shortening individuals' sense of their time left to live.


Assuntos
Planejamento Antecipado de Cuidados , Adulto , Humanos , Refeições , Adulto Jovem
2.
PLoS Biol ; 16(12): e3000099, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30596645

RESUMO

A personalized approach based on a patient's or pathogen's unique genomic sequence is the foundation of precision medicine. Genomic findings must be robust and reproducible, and experimental data capture should adhere to findable, accessible, interoperable, and reusable (FAIR) guiding principles. Moreover, effective precision medicine requires standardized reporting that extends beyond wet-lab procedures to computational methods. The BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting of genomic sequence data provenance, including provenance domain, usability domain, execution domain, verification kit, and error domain. This framework facilitates communication and promotes interoperability. Bioinformatics computation instances that employ the BioCompute framework are easily relayed, repeated if needed, and compared by scientists, regulators, test developers, and clinicians. Easing the burden of performing the aforementioned tasks greatly extends the range of practical application. Large clinical trials, precision medicine, and regulatory submissions require a set of agreed upon standards that ensures efficient communication and documentation of genomic analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that standard and are freely accessible as a GitHub organization (https://github.com/biocompute-objects) following the "Open-Stand.org principles for collaborative open standards development." With high-throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies (e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and clinicians can expand collaboration to drive innovation in precision medicine, potentially decreasing the time and cost associated with next-generation sequencing workflow exchange, reporting, and regulatory reviews.


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Animais , Comunicação , Biologia Computacional/normas , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina de Precisão/tendências , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas , Software , Fluxo de Trabalho
3.
Mil Med ; 188(3-4): e600-e606, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-34677603

RESUMO

INTRODUCTION: The Office of Naval Research sponsored the Blast Load Assessment Sense and Test program to develop a rapid, in-field solution that could be used by team leaders, commanders, and medical personnel to make science-based stand-down decisions for service members exposed to blast overpressure. Toward this goal, the authors propose an ensemble approach based on machine learning (ML) methods to derive a threshold surface for potential neurological deficits that encompasses the intensity of the blast events, the number of exposures, and the period over which the exposures occurred. Because of collection challenges presented by human subjects, the authors utilized data representing a comprehensive set of measures, including structural, behavioral, and cellular changes, from preclinical large animal studies on minipig models. This article describes the development process used to procure the resulting methodology from these studies. METHODS AND MATERIALS: Using an ensemble of ML methods applied to experimental data obtained from 71 Yucatan minipigs, the relationship between blast exposure and neurological deficits was delineated. Despite a relatively small sample size, ML methods with k-fold cross-validation (with k = 5) were justified because of the complexity of the dataset reflecting numerous nonlinear relationships between cellular, structural, and behavioral markers. Based on the physiological responses and environmental measures collected during the large animal study, two models were developed to investigate the relationship between multiple outcome measures and exposure to blast. The histological features model was trained on single-exposure animal data to predict a binary injury response (injured or not) using histological features. The environmental features model related the observed behavioral changes to the environmental parameters collected. RESULTS: The histological features model predicted a binary injury outcome from cellular and physiological measurements. Features identified in developing this classification model showed some level of correlation to observed behavioral changes, suggesting that glial activation inflammation and neurodegenerative responses occur even at the lowest levels of blast exposures tested. The results of the environmental features model, which estimated injury risk from environmental blast exposure characteristics, suggested that the observed changes are not just a function of impulse but an average dynamic impulse rate. Noticeable behavioral deficits were observed at loading rates of 100 kPa (impulse/positive duration) or peak pressures of 300-350 kPa, with an approximate positive phase duration of 3.4 ms for single exposure. Based on this analysis, a 3D threshold surface was developed to characterize the potential risk of neurological deficits. CONCLUSIONS: The ensemble approach facilitated the identification of a pattern of changes across multiple variables to predict the occurrence of changes in brain function. Many changes observed after blast exposure were subtle, making them difficult to measure in human subjects. ML methodologies applied to minipig data demonstrated the value of these techniques in analyzing complex datasets to complement human studies. Importantly, the threshold surface supports the development of science-based blast exposure guidelines.


Assuntos
Traumatismos por Explosões , Humanos , Animais , Suínos , Porco Miniatura , Exposição Ambiental , Aprendizado de Máquina
4.
Photochem Photobiol ; 98(4): 783-797, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34664279

RESUMO

The direct photolysis of estrone in solvents ranging from water to cyclohexane is reported. The photodegradation is dominated by lumiestrone, an epimer of estrone resulting from the inversion of the methyl group at carbon 13, regardless of solvent and photolysis wavelength in the range 254-320 nm. Solvent addition products are also observed in lesser amounts. The photodegradation rate in water is an order of magnitude slower than in nonaqueous solvents. Short wavelength excitation enhances photodegradation. Together, these results suggest complicated photophysics underlie the photochemistry with implications for the remediation of environmental estrogens.


Assuntos
Estrona , Água , Fotoquímica , Fotólise , Solventes
5.
mSphere ; 5(5)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33055255

RESUMO

High-throughput sequencing (HTS) has been widely used to characterize HIV-1 genome sequences. There are no algorithms currently that can directly determine genotype and quasispecies population using short HTS reads generated from long genome sequences without additional software. To establish a robust subpopulation, subtype, and recombination analysis workflow, we amplified the HIV-1 3'-half genome from plasma samples of 65 HIV-1-infected individuals and sequenced the entire amplicon (∼4,500 bp) by HTS. With direct analysis of raw reads using HIVE-hexahedron, we showed that 48% of samples harbored 2 to 13 subpopulations. We identified various subtypes (17 A1s, 4 Bs, 27 Cs, 6 CRF02_AGs, and 11 unique recombinant forms) and defined recombinant breakpoints of 10 recombinants. These results were validated with viral genome sequences generated by single genome sequencing (SGS) or the analysis of consensus sequence of the HTS reads. The HIVE-hexahedron workflow is more sensitive and accurate than just evaluating the consensus sequence and also more cost-effective than SGS.IMPORTANCE The highly recombinogenic nature of human immunodeficiency virus type 1 (HIV-1) leads to recombination and emergence of quasispecies. It is important to reliably identify subpopulations to understand the complexity of a viral population for drug resistance surveillance and vaccine development. High-throughput sequencing (HTS) provides improved resolution over Sanger sequencing for the analysis of heterogeneous viral subpopulations. However, current methods of analysis of HTS reads are unable to fully address accurate population reconstruction. Hence, there is a dire need for a more sensitive, accurate, user-friendly, and cost-effective method to analyze viral quasispecies. For this purpose, we have improved the HIVE-hexahedron algorithm that we previously developed with in silico short sequences to analyze raw HTS short reads. The significance of this study is that our standalone algorithm enables a streamlined analysis of quasispecies, subtype, and recombination patterns from long HIV-1 genome regions without the need of additional sequence analysis tools. Distinct viral populations and recombination patterns identified by HIVE-hexahedron are further validated by comparison with sequences obtained by single genome sequencing (SGS).


Assuntos
Algoritmos , Genoma Viral , HIV-1/classificação , HIV-1/genética , Recombinação Genética , Estudos de Coortes , Simulação por Computador , Variação Genética , Genótipo , Infecções por HIV/sangue , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Quase-Espécies/genética
6.
PLoS One ; 14(9): e0206484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509535

RESUMO

A comprehensive knowledge of the types and ratios of microbes that inhabit the healthy human gut is necessary before any kind of pre-clinical or clinical study can be performed that attempts to alter the microbiome to treat a condition or improve therapy outcome. To address this need we present an innovative scalable comprehensive analysis workflow, a healthy human reference microbiome list and abundance profile (GutFeelingKB), and a novel Fecal Biome Population Report (FecalBiome) with clinical applicability. GutFeelingKB provides a list of 157 organisms (8 phyla, 18 classes, 23 orders, 38 families, 59 genera and 109 species) that forms the baseline biome and therefore can be used as healthy controls for studies related to dysbiosis. This list can be expanded to 863 organisms if closely related proteomes are considered. The incorporation of microbiome science into routine clinical practice necessitates a standard report for comparison of an individual's microbiome to the growing knowledgebase of "normal" microbiome data. The FecalBiome and the underlying technology of GutFeelingKB address this need. The knowledgebase can be useful to regulatory agencies for the assessment of fecal transplant and other microbiome products, as it contains a list of organisms from healthy individuals. In addition to the list of organisms and their abundances, this study also generated a collection of assembled contiguous sequences (contigs) of metagenomics dark matter. In this study, metagenomic dark matter represents sequences that cannot be mapped to any known sequence but can be assembled into contigs of 10,000 nucleotides or higher. These sequences can be used to create primers to study potential novel organisms. All data is freely available from https://hive.biochemistry.gwu.edu/gfkb and NCBI's Short Read Archive.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Metagenômica , Fezes/microbiologia , Humanos , Metagenômica/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-26989153

RESUMO

The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure.The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interface Usuário-Computador , Biologia Computacional , Mutação/genética , Poliovirus/genética , Vacinas contra Poliovirus/imunologia , Proteômica , Recombinação Genética , Alinhamento de Sequência , Estatística como Assunto
8.
Semin Vasc Surg ; 28(3-4): 184-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27113285

RESUMO

Achieving healing in patients with peripheral artery disease and lower extremity wounds represent a significant clinical challenge. Important outcome measures that define a successful therapeutic approach include wound healing rate, time to heal, and recurrence with time. This article reviews our experience managing a peripheral artery disease patient cohort at a Veterans Affairs medical center based on the initial clinical evaluation stratification and prospective enrollment into a predetermined treatment strategy.


Assuntos
Esfíncter Esofágico Inferior/irrigação sanguínea , Isquemia/terapia , Úlcera da Perna/terapia , Doença Arterial Periférica/terapia , Procedimentos Cirúrgicos Vasculares , Cicatrização , Idoso , Amputação Cirúrgica , California , Bases de Dados Factuais , Feminino , Humanos , Análise de Intenção de Tratamento , Isquemia/diagnóstico , Isquemia/mortalidade , Úlcera da Perna/diagnóstico , Úlcera da Perna/mortalidade , Salvamento de Membro , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/mortalidade , Recidiva , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Procedimentos Cirúrgicos Vasculares/mortalidade
9.
Database (Oxford) ; 2015: bav032, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25841438

RESUMO

Bio-ontologies provide terminologies for the scientific community to describe biomedical entities in a standardized manner. There are multiple initiatives that are developing biomedical terminologies for the purpose of providing better annotation, data integration and mining capabilities. Terminology resources devised for multiple purposes inherently diverge in content and structure. A major issue of biomedical data integration is the development of overlapping terms, ambiguous classifications and inconsistencies represented across databases and publications. The disease ontology (DO) was developed over the past decade to address data integration, standardization and annotation issues for human disease data. We have established a DO cancer project to be a focused view of cancer terms within the DO. The DO cancer project mapped 386 cancer terms from the Catalogue of Somatic Mutations in Cancer (COSMIC), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, Therapeutically Applicable Research to Generate Effective Treatments, Integrative Oncogenomics and the Early Detection Research Network into a cohesive set of 187 DO terms represented by 63 top-level DO cancer terms. For example, the COSMIC term 'kidney, NS, carcinoma, clear_cell_renal_cell_carcinoma' and TCGA term 'Kidney renal clear cell carcinoma' were both grouped to the term 'Disease Ontology Identification (DOID):4467 / renal clear cell carcinoma' which was mapped to the TopNodes_DOcancerslim term 'DOID:263 / kidney cancer'. Mapping of diverse cancer terms to DO and the use of top level terms (DO slims) will enable pan-cancer analysis across datasets generated from any of the cancer term sources where pan-cancer means including or relating to all or multiple types of cancer. The terms can be browsed from the DO web site (http://www.disease-ontology.org) and downloaded from the DO's Apache Subversion or GitHub repositories. Database URL: http://www.disease-ontology.org


Assuntos
Ontologias Biológicas , Mineração de Dados , Bases de Dados Factuais , Neoplasias , Animais , Humanos
10.
Genes (Basel) ; 5(2): 254-69, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24705329

RESUMO

Cardiovascular diseases are a large contributor to causes of early death in developed countries. Some of these conditions, such as sudden cardiac death and atrial fibrillation, stem from arrhythmias-a spectrum of conditions with abnormal electrical activity in the heart. Genome-wide association studies can identify single nucleotide variations (SNVs) that may predispose individuals to developing acquired forms of arrhythmias. Through manual curation of published genome-wide association studies, we have collected a comprehensive list of 75 SNVs associated with cardiac arrhythmias. Ten of the SNVs result in amino acid changes and can be used in proteomic-based detection methods. In an effort to identify additional non-synonymous mutations that affect the proteome, we analyzed the post-translational modification S-nitrosylation, which is known to affect cardiac arrhythmias. We identified loss of seven known S-nitrosylation sites due to non-synonymous single nucleotide variations (nsSNVs). For predicted nitrosylation sites we found 1429 proteins where the sites are modified due to nsSNV. Analysis of the predicted S-nitrosylation dataset for over- or under-representation (compared to the complete human proteome) of pathways and functional elements shows significant statistical over-representation of the blood coagulation pathway. Gene Ontology (GO) analysis displays statistically over-represented terms related to muscle contraction, receptor activity, motor activity, cystoskeleton components, and microtubule activity. Through the genomic and proteomic context of SNVs and S-nitrosylation sites presented in this study, researchers can look for variation that can predispose individuals to cardiac arrhythmias. Such attempts to elucidate mechanisms of arrhythmia thereby add yet another useful parameter in predicting susceptibility for cardiac diseases.

11.
Database (Oxford) ; 2014: bau022, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667251

RESUMO

Years of sequence feature curation by UniProtKB/Swiss-Prot, PIR-PSD, NCBI-CDD, RefSeq and other database biocurators has led to a rich repository of information on functional sites of genes and proteins. This information along with variation-related annotation can be used to scan human short sequence reads from next-generation sequencing (NGS) pipelines for presence of non-synonymous single-nucleotide variations (nsSNVs) that affect functional sites. This and similar workflows are becoming more important because thousands of NGS data sets are being made available through projects such as The Cancer Genome Atlas (TCGA), and researchers want to evaluate their biomarkers in genomic data. BioMuta, an integrated sequence feature database, provides a framework for automated and manual curation and integration of cancer-related sequence features so that they can be used in NGS analysis pipelines. Sequence feature information in BioMuta is collected from the Catalogue of Somatic Mutations in Cancer (COSMIC), ClinVar, UniProtKB and through biocuration of information available from publications. Additionally, nsSNVs identified through automated analysis of NGS data from TCGA are also included in the database. Because of the petabytes of data and information present in NGS primary repositories, a platform HIVE (High-performance Integrated Virtual Environment) for storing, analyzing, computing and curating NGS data and associated metadata has been developed. Using HIVE, 31 979 nsSNVs were identified in TCGA-derived NGS data from breast cancer patients. All variations identified through this process are stored in a Curated Short Read archive, and the nsSNVs from the tumor samples are included in BioMuta. Currently, BioMuta has 26 cancer types with 13 896 small-scale and 308 986 large-scale study-derived variations. Integration of variation data allows identifications of novel or common nsSNVs that can be prioritized in validation studies. Database URL: BioMuta: http://hive.biochemistry.gwu.edu/tools/biomuta/index.php; CSR: http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr; HIVE: http://hive.biochemistry.gwu.edu.


Assuntos
Bases de Dados Genéticas , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Publicações , Software , Interface Usuário-Computador , Humanos , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , PubMed
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA