Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1420309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040633

RESUMO

Background: Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4ßδ GABAA receptors (GABARs); defective synaptic pruning impairs this process. Methods: We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4ßδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks. Results: Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 µm; post-pubertal: 0.81 ± 0.14 spines/10 µm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4ßδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility. Conclusions: These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.

2.
Brain Res ; 1835: 148929, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599510

RESUMO

Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4ßδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4ßδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4ßδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density âˆ¼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4ßδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.


Assuntos
Espinhas Dendríticas , Córtex Pré-Frontal , Receptores de GABA-A , Esquizofrenia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Receptores de GABA-A/metabolismo , Masculino , Esquizofrenia/metabolismo , Camundongos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Camundongos Endogâmicos C57BL , Isoxazóis/farmacologia , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Agonistas de Receptores de GABA-A/farmacologia , Transtorno do Espectro Autista/metabolismo , Reconhecimento Psicológico/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA