Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(1-2): 306-317.e16, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30503212

RESUMO

Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible "stumpy forms" in their host bloodstream. However, the QS signal "stumpy induction factor" (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream "slender form" trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Percepção de Quorum/fisiologia , Trypanosoma/metabolismo , Diferenciação Celular , Sequência Conservada/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana Transportadoras/genética , Oligopeptídeos/genética , Oligopeptídeos/fisiologia , Filogenia , Proteínas de Protozoários/metabolismo , Percepção de Quorum/genética , Transdução de Sinais , Trypanosoma/fisiologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Virulência/fisiologia
2.
Cell ; 166(6): 1436-1444.e10, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610568

RESUMO

Conjugative pili are widespread bacterial appendages that play important roles in horizontal gene transfer, in spread of antibiotic resistance genes, and as sites of phage attachment. Among conjugative pili, the F "sex" pilus encoded by the F plasmid is the best functionally characterized, and it is also historically the most important, as the discovery of F-plasmid-mediated conjugation ushered in the era of molecular biology and genetics. Yet, its structure is unknown. Here, we present atomic models of two F family pili, the F and pED208 pili, generated from cryoelectron microscopy reconstructions at 5.0 and 3.6 Å resolution, respectively. These structures reveal that conjugative pili are assemblies of stoichiometric protein-phospholipid units. We further demonstrate that each pilus type binds preferentially to particular phospholipids. These structures provide the molecular basis for F pilus assembly and also shed light on the remarkable properties of conjugative pili in bacterial secretion and phage infection.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/fisiologia , Fator F/química , Fímbrias Bacterianas/química , Modelos Moleculares , Fosfolipídeos/química , Sítios de Ligação Microbiológicos/genética , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Fator F/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Lipídeos/química , Mutação , Fosfolipídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sistemas de Secreção Tipo V/química , Sistemas de Secreção Tipo V/metabolismo
3.
PLoS Pathog ; 20(7): e1012382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991025

RESUMO

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.


Assuntos
Resistência a Medicamentos , Leishmania donovani , Leishmaniose Visceral , Esterol 14-Desmetilase , Leishmania donovani/enzimologia , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Anfotericina B/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Antiprotozoários/farmacologia , Humanos , Ergosterol/metabolismo
4.
PLoS Pathog ; 19(2): e1011147, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780551

RESUMO

Host-specific plant pathogens must coordinate their life cycles with the availability of a host plant. Although this is frequently achieved through a response to specific chemical cues derived from the host plant, little is known about the molecular basis of the response to such cues and how these are used to trigger activation of the life cycle. In host-specific plant-parasitic cyst nematodes, unhatched juvenile nematodes lie dormant in the eggshell until chemical cues from a suitable host plant are detected and the hatching process is initiated. The molecular mechanisms by which hatch is linked to the presence of these chemical cues is unknown. We have identified a novel annexin-like protein that is localised to the eggshell of the potato cyst nematode Globodera rostochiensis. This annexin is unique in having a short peptide insertion that structural modelling predicts is present in one of the calcium-binding sites of this protein. Host-induced gene silencing of the annexin impacts the ability of the nematode to regulate and control permeability of the eggshell. We show that in the presence of the chemicals that induce hatching annexin lipid binding capabilities change, providing the first molecular link between a nematode eggshell protein and host-derived cues. This work demonstrates how a protein from a large family has been recruited to play a critical role in the perception of the presence of a host and provides a new potential route for control of cyst nematodes that impact global food production.


Assuntos
Parasitos , Tylenchoidea , Animais , Anexinas , Casca de Ovo , Plantas , Estágios do Ciclo de Vida
5.
Appl Environ Microbiol ; 90(2): e0155323, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259079

RESUMO

Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cobre/farmacologia , Antivirais , Óxidos , Íons
6.
Bioorg Med Chem Lett ; 110: 129883, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013490

RESUMO

The protozoan parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for continued propagation of neglected tropical diseases such as African sleeping sickness, Chagas disease and leishmaniasis respectively. Following a report that captopril targets Leishmania donovani dipeptidyl carboxypeptidase, a series of simple proline amides and captopril analogues were synthesized and found to exhibit 1-2 µM in vitro inhibition and selectivity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. The results were corroborated with computational docking studies. Arguably, the synthetic proline amides represent the structurally simplest examples of in vitro pan antiprotozoal compounds.


Assuntos
Captopril , Trypanosoma brucei brucei , Trypanosoma cruzi , Captopril/farmacologia , Captopril/química , Captopril/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Estrutura Molecular , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Humanos
7.
IUBMB Life ; 74(11): 1036-1051, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36017969

RESUMO

This review highlights the key role of fatty acid desaturases in the synthesis of naturally occurring, more common and not unsaturated fatty acids. The three major classes of fatty acid desaturases, such as acyl-lipid, acyl-acyl carrier protein and acyl-coenzyme A, are described in detail, with particular attention to the cellular localisation, the structure, the substrate and product specificity and the expression and regulation of desaturase genes. The review also gives an insight into the biocatalytic reaction of fatty acid desaturation by covering the general and more class-specific mechanistic studies around the synthesis of unsaturated fatty acids Finally, we conclude the review by looking at the numerous novel applications for desaturases in order to meet the very high demand for polyunsaturated fatty acids, taking into account the opportunity for the development of new, more efficient, easily reproducible, sustainable bioengineering advances in the field.


Assuntos
Proteína de Transporte de Acila , Ácidos Graxos Insaturados , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Especificidade por Substrato
8.
Antimicrob Agents Chemother ; 65(7): e0189220, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33875438

RESUMO

Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely outdated, inadequate, and face mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalyzing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the nonoxidative branch of the pentose phosphate pathway, which catalyzes the interconversion of d-ribose 5-phosphate and d-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB (LiRpiB), performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several fragments were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as antileishmanial agents.


Assuntos
Leishmania infantum , Preparações Farmacêuticas , Sequência de Aminoácidos , Humanos , Ribosemonofosfatos
9.
Parasitology ; 148(10): 1271-1276, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33070788

RESUMO

p67 is a type I transmembrane glycoprotein of the terminal lysosome of African trypanosomes. Its biosynthesis involves transport of an initial gp100 ER precursor to the lysosome, followed by cleavage to N-terminal (gp32) and C-terminal (gp42) subunits that remain non-covalently associated. p67 knockdown is lethal, but the only overt phenotype is an enlarged lysosome (~250 to >1000 nm). Orthologues have been characterized in Dictyostelium and mammals. These have processing pathways similar to p67, and are thought to have phospholipase B-like (PLBL) activity. The mouse PLBD2 crystal structure revealed that the PLBLs represent a subgroup of the larger N-terminal nucleophile (NTN) superfamily, all of which are hydrolases. NTNs activate by internal autocleavage mediated by a nucleophilic residue, i.e. Cys, Ser or Thr, on the upstream peptide bond to form N-terminal α (gp32) and C-terminal ß (gp42) subunits that remain non-covalently associated. The N-terminal residue of the ß subunit is then catalytic in subsequent hydrolysis reactions. All PLBLs have a conserved Cys/Ser dipeptide at the α/ß junction (Cys241/Ser242 in p67), mutation of which renders p67 non-functional in RNAi rescue assays. p67 orthologues are found in many clades of parasitic protozoa, thus p67 is the founding member of a group of hydrolases that likely play a role broadly in the pathogenesis of parasitic infections.


Assuntos
Hidrolases/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Hidrolases/metabolismo , Lisossomos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia
10.
Traffic ; 19(6): 391-405, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29533496

RESUMO

The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Glicoproteínas de Membrana/metabolismo , Biossíntese de Proteínas/fisiologia , Trypanosoma brucei brucei/metabolismo , Homeostase/fisiologia , Via Secretória/fisiologia
11.
PLoS Pathog ; 14(10): e1007326, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30346997

RESUMO

Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1.


Assuntos
Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/parasitologia , Animais , Feminino , Proteínas Ferro-Enxofre/química , Camundongos , Camundongos Endogâmicos BALB C , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase/metabolismo
12.
Lipids Health Dis ; 19(1): 201, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867761

RESUMO

BACKGROUND: Lipid dysregulation is associated with several key characteristics of Alzheimer's disease (AD), including amyloid-ß and tau neuropathology, neurodegeneration, glucose hypometabolism, as well as synaptic and mitochondrial dysfunction. The ß-site amyloid precursor protein cleavage enzyme 1 (BACE1) is associated with increased amyloidogenesis, and has been affiliated with diabetes via its role in metabolic regulation. METHODS: The research presented herein investigates the role of hBACE1 in lipid metabolism and whether specific brain regions show increased vulnerability to lipid dysregulation. By utilising advanced mass spectrometry techniques, a comprehensive, quantitative lipidomics analysis was performed to investigate the phospholipid, sterol, and fatty acid profiles of the brain from the well-known PLB4 hBACE1 knock-in mouse model of AD, which also shows a diabetic phenotype, to provide insight into regional alterations in lipid metabolism. RESULTS: Results show extensive region - specific lipid alterations in the PLB4 brain compared to the wild-type, with decreases in the phosphatidylethanolamine content of the cortex and triacylglycerol content of the hippocampus and hypothalamus, but increases in the phosphatidylcholine, phosphatidylinositol, and diacylglycerol content of the hippocampus. Several sterol and fatty acids were also specifically decreased in the PLB4 hippocampus. CONCLUSION: Collectively, the lipid alterations observed in the PLB4 hBACE1 knock-in AD mouse model highlights the regional vulnerability of the brain, in particular the hippocampus and hypothalamus, to lipid dysregulation, hence supports the premise that metabolic abnormalities have a central role in both AD and diabetes.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Hipocampo/patologia , Humanos , Hipotálamo/patologia , Lipidômica/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Esteróis/metabolismo , Transgenes
13.
Proc Natl Acad Sci U S A ; 114(8): E1365-E1374, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167757

RESUMO

S-acylation is a major posttranslational modification, catalyzed by the zinc finger DHHC domain containing (zDHHC) enzyme family. S-acylated proteins can be modified by different fatty acids; however, very little is known about how zDHHC enzymes contribute to acyl chain heterogeneity. Here, we used fatty acid-azide/alkyne labeling of mammalian cells, showing their transformation into acyl-CoAs and subsequent click chemistry-based detection, to demonstrate that zDHHC enzymes have marked differences in their fatty acid selectivity. This difference in selectivity was apparent even for highly related enzymes, such as zDHHC3 and zDHHC7, which displayed a marked difference in their ability to use C18:0 acyl-CoA as a substrate. Furthermore, we identified isoleucine-182 in transmembrane domain 3 of zDHHC3 as a key determinant in limiting the use of longer chain acyl-CoAs by this enzyme. This study uncovered differences in the fatty acid selectivity profiles of cellular zDHHC enzymes and mapped molecular determinants governing this selectivity.


Assuntos
Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Acil Coenzima A/metabolismo , Acilação/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Química Click/métodos , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Especificidade por Substrato/fisiologia , Dedos de Zinco/fisiologia
14.
Angew Chem Int Ed Engl ; 59(9): 3705-3710, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31856373

RESUMO

The importance of 1,5-O⋅⋅⋅chalcogen (Ch) interactions in isochalcogenourea catalysis (Ch=O, S, Se) is investigated. Conformational analyses of N-acyl isochalcogenouronium species and comparison with kinetic data demonstrate the significance of 1,5-O⋅⋅⋅Ch interactions in enantioselective catalysis. Importantly, the selenium analogue demonstrates enhanced rate and selectivity profiles across a range of reaction processes including nitronate conjugate addition and formal [4+2] cycloadditions. A gram-scale synthesis of the most active selenium analogue was developed using a previously unreported seleno-Hugerschoff reaction, allowing the challenging kinetic resolutions of tertiary alcohols to be performed at 500 ppm catalyst loading. Density functional theory (DFT) and natural bond orbital (NBO) calculations support the role of orbital delocalization (occurring by intramolecular chalcogen bonding) in determining the conformation, equilibrium population, and reactivity of N-acylated intermediates.

15.
Parasitology ; 146(5): 604-616, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30392480

RESUMO

The kinetoplastid parasite Trypanosoma brucei causes African trypanosomiasis in both humans and animals. Infections place a significant health and economic burden on developing nations in sub-Saharan Africa, but few effective anti-parasitic treatments are currently available. Hence, there is an urgent need to identify new leads for drug development. The T. brucei neutral sphingomyelinase (TbnSMase) was previously established as essential to parasite survival, consequently being identified as a potential drug target. This enzyme may catalyse the single route to sphingolipid catabolism outside the T. brucei lysosome. To obtain new insight into parasite sphingolipid catabolism, the substrate specificity of TbnSMase was investigated using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Recombinant TbnSMase was shown to degrade sphingomyelin, inositol-phosphoceramide and ethanolamine-phosphoceramide sphingolipid substrates, consistent with the sphingolipid complement of the parasites. TbnSMase also catabolized ceramide-1-phosphate, but was inactive towards sphingosine-1-phosphate. The broad-range specificity of this enzyme towards sphingolipid species is a unique feature of TbnSMase. Additionally, ESI-MS/MS analysis revealed previously uncharacterized activity towards lyso-phosphatidylcholine despite the enzyme's inability to degrade phosphatidylcholine. Collectively, these data underline the enzyme's importance in choline homoeostasis and the turnover of sphingolipids in T. brucei.


Assuntos
Proteínas de Protozoários/genética , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/genética , Trypanosoma brucei brucei/enzimologia , Proteínas de Protozoários/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Esfingomielina Fosfodiesterase/metabolismo , Especificidade por Substrato
16.
Bioorg Chem ; 84: 98-105, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30500524

RESUMO

A series of piperazinyl-ß-carboline-3-carboxamide derivatives were designed through a molecular hybridization approach. Designed analogues were synthesized, characterized and evaluated for anti-leishmanial activity against Leishmania infantum and Leishmania donovani. In L. infantum inhibition assay, compounds 7d, 7g and 7c displayed potent inhibition of promastigotes (EC50 1.59, 1.47 and 3.73 µM respectively) and amastigotes (EC50 1.4, 1.9 and 2.6 µM respectively). SAR studies revealed that, para substitution of methoxy, chloro groups and methyl group on ortho position favored anti-leishmanial activity against L. infantum. Among these analogues 7d, 7h, 7n and 7g exhibited potent inhibition against L. donovani promastigotes (EC50 0.91, 4.0, 4.57 and 5.02 µM respectively), axenic amastigotes (EC50 0.9, 3.5, 2.2 and 3.8 µM respectively) and intracellular amastigotes (EC50 1.3, 7.8, 5.6 and 6.3 µM respectively). SAR studies suggested that, para substitution of methoxy group, para and meta substitution of chloro groups and benzyl replacement recommended for significant anti-leishmanial against L. donovani.


Assuntos
Antiprotozoários/farmacologia , Indóis/farmacologia , Leishmania donovani/efeitos dos fármacos , Piridinas/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Células THP-1
17.
European J Org Chem ; 2019(31-32): 5434-5440, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598093

RESUMO

The protozoan parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for the severely debilitating neglected Tropical diseases of African sleeping sickness, Chagas disease and leishmaniasis, respectively. As part of our ongoing programme exploring the potential of simplified analogues of the acetogenin chamuvarinin we identified the T. brucei FoF1-ATP synthase as a target of our earlier triazole analogue series. Using computational docking studies, we hypothesised that the central triazole heterocyclic spacer could be substituted for a central 2,5-substituted furan moiety, thus diversifying the chemical framework for the generation of compounds with greater potency and/or selectivity. Here we report the design, docking, synthesis and biological evaluation of new series of trypanocidal compounds and demonstrate their on-target inhibitory effects. Furthermore, the synthesis of furans by the modular coupling of alkyne- and aldehyde-THPs to bis-THP 1,4-alkyne diols followed by ruthenium/xantphos-catalysed heterocyclisation described here represents the most complex use of this method of heterocyclisation to date.

18.
Biochem J ; 475(2): 511-529, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29259081

RESUMO

Protein import into the Leishmania glycosome requires docking of the cargo-loaded peroxin 5 (PEX5) receptor to the peroxin 14 (PEX14) bound to the glycosome surface. To examine the LdPEX14-membrane interaction, we purified L. donovani promastigote glycosomes and determined the phospholipid and fatty acid composition. These membranes contained predominately phosphatidylethanolamine, phosphatidylcholine, and phosphatidylglycerol (PG) modified primarily with C18 and C22 unsaturated fatty acid. Using large unilamellar vesicles (LUVs) with a lipid composition mimicking the glycosomal membrane in combination with sucrose density centrifugation and fluorescence-activated cell sorting technique, we established that the LdPEX14 membrane-binding activity was dependent on a predicted transmembrane helix found within residues 149-179. Monolayer experiments showed that the incorporation of PG and phospholipids with unsaturated fatty acids, which increase membrane fluidity and favor a liquid expanded phase, facilitated the penetration of LdPEX14 into biological membranes. Moreover, we demonstrated that the binding of LdPEX5 receptor or LdPEX5-PTS1 receptor-cargo complex was contingent on the presence of LdPEX14 at the surface of LUVs.


Assuntos
Leishmania donovani/metabolismo , Microcorpos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Fosfatidilgliceróis/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Sítios de Ligação , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Fracionamento Celular , Colesterol/química , Colesterol/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Leishmania donovani/genética , Fluidez de Membrana , Microcorpos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
19.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362457

RESUMO

: It has long been established that mitochondrial dysfunction in Alzheimer's disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17ß-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17ß-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.


Assuntos
17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/química , Benzotiazóis/química , Ureia/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Mitocôndrias/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
20.
Mol Microbiol ; 104(3): 412-427, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28142188

RESUMO

Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline-inducible down-regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down-regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth.


Assuntos
Carboxiliases/metabolismo , Transferases de Grupos Nitrogenados/metabolismo , Trypanosoma brucei brucei/enzimologia , Descarboxilação , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA