Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 16(3): e1008317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32187185

RESUMO

RNA Polymerase II (RNAPII) transcription termination is regulated by the phosphorylation status of the C-terminal domain (CTD). The phosphatase Rtr1 has been shown to regulate serine 5 phosphorylation on the CTD; however, its role in the regulation of RNAPII termination has not been explored. As a consequence of RTR1 deletion, interactions within the termination machinery and between the termination machinery and RNAPII were altered as quantified by Disruption-Compensation (DisCo) network analysis. Of note, interactions between RNAPII and the cleavage factor IA (CF1A) subunit Pcf11 were reduced in rtr1Δ, whereas interactions with the CTD and RNA-binding termination factor Nrd1 were increased. Globally, rtr1Δ leads to decreases in numerous noncoding RNAs that are linked to the Nrd1, Nab3 and Sen1 (NNS) -dependent RNAPII termination pathway. Genome-wide analysis of RNAPII and Nrd1 occupancy suggests that loss of RTR1 leads to increased termination at noncoding genes. Additionally, premature RNAPII termination increases globally at protein-coding genes with a decrease in RNAPII occupancy occurring just after the peak of Nrd1 recruitment during early elongation. The effects of rtr1Δ on RNA expression levels were lost following deletion of the exosome subunit Rrp6, which works with the NNS complex to rapidly degrade a number of noncoding RNAs following termination. Overall, these data suggest that Rtr1 restricts the NNS-dependent termination pathway in WT cells to prevent premature termination of mRNAs and ncRNAs. Rtr1 facilitates low-level elongation of noncoding transcripts that impact RNAPII interference thereby shaping the transcriptome.


Assuntos
Códon de Terminação/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , DNA Helicases/genética , Regulação Fúngica da Expressão Gênica/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Fosforilação/genética , RNA Helicases/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Saccharomyces cerevisiae/genética
2.
PLoS Genet ; 11(2): e1004999, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25680078

RESUMO

The exosome and its nuclear specific subunit Rrp6 form a 3'-5' exonuclease complex that regulates diverse aspects of RNA biology including 3' end processing and degradation of a variety of noncoding RNAs (ncRNAs) and unstable transcripts. Known targets of the nuclear exosome include short (<1000 bp) RNAPII transcripts such as small noncoding RNAs (snRNAs), cryptic unstable transcripts (CUTs), and some stable unannotated transcripts (SUTs) that are terminated by an Nrd1, Nab3, and Sen1 (NNS) dependent mechanism. NNS-dependent termination is coupled to RNA 3' end processing and/or degradation by the Rrp6/exosome in yeast. Recent work suggests Nrd1 is necessary for transcriptome surveillance, regulating promoter directionality and suppressing antisense transcription independently of, or prior to, Rrp6 activity. It remains unclear whether Rrp6 is directly involved in termination; however, Rrp6 has been implicated in the 3' end processing and degradation of ncRNA transcripts including CUTs. To determine the role of Rrp6 in NNS termination globally, we performed RNA sequencing (RNA-Seq) on total RNA and perform ChIP-exo analysis of RNA Polymerase II (RNAPII) localization. Deletion of RRP6 promotes hyper-elongation of multiple NNS-dependent transcripts resulting from both improperly processed 3' RNA ends and faulty transcript termination at specific target genes. The defects in RNAPII termination cause transcriptome-wide changes in mRNA expression through transcription interference and/or antisense repression, similar to previously reported effects of depleting Nrd1 from the nucleus. Elongated transcripts were identified within all classes of known NNS targets with the largest changes in transcription termination occurring at CUTs. Interestingly, the extended transcripts that we have detected in our studies show remarkable similarity to Nrd1-unterminated transcripts at many locations, suggesting that Rrp6 acts with the NNS complex globally to promote transcription termination in addition to 3' end RNA processing and/or degradation at specific targets.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Proteínas Nucleares/genética , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , DNA Helicases/genética , Exossomos/genética , Exossomos/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , RNA Helicases/genética , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma/genética
3.
Biomolecules ; 14(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062531

RESUMO

DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.


Assuntos
Adenosina , Estabilidade Proteica , Humanos , Células HEK293 , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Estabilidade Proteica/efeitos dos fármacos , Metilação , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Temperatura
4.
Mol Cell Biol ; 36(17): 2236-45, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27247267

RESUMO

In eukaryotes, the C-terminal domain (CTD) of Rpb1 contains a heptapeptide repeat sequence of (Y1S2P3T4S5P6S7)n that undergoes reversible phosphorylation through the opposing action of kinases and phosphatases. Rtr1 is a conserved protein that colocalizes with RNA polymerase II (RNAPII) and has been shown to be important for the transition from elongation to termination during transcription by removing RNAPII CTD serine 5 phosphorylation (Ser5-P) at a selection of target genes. In this study, we show that Rtr1 is a global regulator of the CTD code with deletion of RTR1 causing genome-wide changes in Ser5-P CTD phosphorylation and cotranscriptional histone H3 lysine 36 trimethylation (H3K36me3). Using chromatin immunoprecipitation and high-resolution microarrays, we show that RTR1 deletion results in global changes in RNAPII Ser5-P levels on genes with different lengths and transcription rates consistent with its role as a CTD phosphatase. Although Ser5-P levels increase, the overall occupancy of RNAPII either decreases or stays the same in the absence of RTR1 Additionally, the loss of Rtr1 in vivo leads to increases in H3K36me3 levels genome-wide, while total histone H3 levels remain relatively constant within coding regions. Overall, these findings suggest that Rtr1 regulates H3K36me3 levels through changes in the number of binding sites for the histone methyltransferase Set2, thereby influencing both the CTD and histone codes.


Assuntos
Histonas/genética , RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Fatores de Transcrição/genética , Imunoprecipitação da Cromatina , Deleção de Genes , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Domínios Proteicos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
Mol Biosyst ; 10(7): 1730-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24671508

RESUMO

The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast. Our studies revealed that hyperphosphorylated RNAPII is the primary interacting partner for Rtr1. To extend these findings, we performed quantitative proteomic analyses of Rtr1 interactions in yeast strains deleted for CTK1, the gene encoding the catalytic subunit of the CTD kinase I (CTDK-I) complex. Interestingly, we found that the interaction between Rtr1 and RNAPII is decreased in ctk1Δ strains. We hypothesize that serine-2 CTD phosphorylation is required for Rtr1 recruitment to RNAPII during transcription elongation.


Assuntos
Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Fatores de Transcrição/metabolismo , Domínio Catalítico , Fosforilação , Proteômica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA