Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38603604

RESUMO

MOTIVATION: Whole exome sequencing (WES) has emerged as a powerful tool for genetic research, enabling the collection of a tremendous amount of data about human genetic variation. However, properly identifying which variants are causative of a genetic disease remains an important challenge, often due to the number of variants that need to be screened. Expanding the screening to combinations of variants in two or more genes, as would be required under the oligogenic inheritance model, simply blows this problem out of proportion. RESULTS: We present here the High-throughput oligogenic prioritizer (Hop), a novel prioritization method that uses direct oligogenic information at the variant, gene and gene pair level to detect digenic variant combinations in WES data. This method leverages information from a knowledge graph, together with specialized pathogenicity predictions in order to effectively rank variant combinations based on how likely they are to explain the patient's phenotype. The performance of Hop is evaluated in cross-validation on 36 120 synthetic exomes for training and 14 280 additional synthetic exomes for independent testing. Whereas the known pathogenic variant combinations are found in the top 20 in approximately 60% of the cross-validation exomes, 71% are found in the same ranking range when considering the independent set. These results provide a significant improvement over alternative approaches that depend simply on a monogenic assessment of pathogenicity, including early attempts for digenic ranking using monogenic pathogenicity scores. AVAILABILITY AND IMPLEMENTATION: Hop is available at https://github.com/oligogenic/HOP.


Assuntos
Exoma , Humanos , Sequenciamento do Exoma/métodos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos
2.
Am J Med Genet A ; : e63727, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808951

RESUMO

Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a splice factor found in nuclear speckles, which are small membrane-free organelles implicated in epigenetic regulation, chromatin organization, DNA repair, and RNA modification. Bi-allelic loss-of-function variants in NSRP1 have recently been identified in patients suffering from a severe neurodevelopmental disorder, presenting with neurodevelopmental delay, epilepsy, microcephaly, hypotonia, and spastic cerebral palsy. Described patients acquired neither independent walking nor speech and often showed anomalies on cerebral MRI. Here we describe the case of a 14-year-old girl with motor and language delay as well as intellectual disability, who presents an ataxic gait but walks without assistance and speaks in short sentences. Whole-genome sequencing revealed the compound heterozygous NSRP1 variants c.114 + 2T > G and c.1595T > A (p.Val532Glu). Functional validation using HEK293T cells transfected with either wild-type or mutated GFP-tagged Nsrp1 suggests that the Val532Glu variant interferes with the function of the nuclear localization signal, and leads to mislocalization of NSRP1 in the cytosol, thus confirming the pathogenicity of the observed variant. This case helps to expand the phenotypic and genetic spectrum associated with pathogenic NSRP1 variants and indicates that this diagnosis should also be suspected in patients with milder phenotypes.

4.
Front Pediatr ; 12: 1303772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464896

RESUMO

Neonatal encephalopathy (NE) is a complex clinical condition with diverse etiologies. Hypoxic-ischemic encephalopathy (HIE) is a major contributor to NE cases. However, distinguishing NE subtypes, such as pontocerebellar hypoplasia type 1E (PCH1E), from HIE can be challenging due to overlapping clinical features. Here, we present a case of PCH1E in a neonate with a homozygous mutation c.72delT p. (Phe24LeufsTer20) in the SLC25A46 gene. The severity of PCH1E associated NE highlighted the significance of early recognition to guide appropriate clinical management.

5.
Eur J Hum Genet ; 32(8): 980-986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839987

RESUMO

Protection of Telomeres Protein 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex, regulating telomere length. Some POT1 gene pathogenic variants (PV) lead to telomere elongation, genomic instability and higher risk of cancer. POT1 tumour predisposition syndrome (POT1-TPD) has autosomal dominant inheritance and unknown penetrance. It is associated with increased risk of cutaneous melanoma, chronic lymphocytic leukaemia, angiosarcoma and gliomas. In this work, we aim to describe a broader cancer phenotype related to POT1-TPD, in three families (two with a four generation pedigree, one with a five generation pedigree). The three index cases were referred to our oncogenetic centre for genetic counselling due to their personal history of cancer. Two underwent clinical exome sequencing of 4,867 genes associated with Mendelian genetic diseases, and another underwent gene panel sequencing including POT1, which identified three different POT1 PV: NC_000007.14(NM_015450.2):c.349C>T; NC_000007.14(NM_015450.2):c.233T>C and NC_000007.14(NM_015450.2):c.818G>A; already described in the literature. Referenced relatives, did a target genetic test (according to the POT1 PV identified in the family). In total, 37 individuals were tested (51.4% females), median age of 46 (22-81) years, with POT1 PV detected in 22. POT1-TPD was observed, but also a higher incidence of other cancers (other sarcomas, papillary thyroid cancer, early onset prostate cancer and leukaemia). These findings contribute to an increase in our knowledge about POT1 PV, and it can play a role in the definition of future POT1 PV screening criteria, POT1 carrier surveillance protocols (possibly considering screening for all types of sarcomas) and in genetic counselling.


Assuntos
Linhagem , Complexo Shelterina , Proteínas de Ligação a Telômeros , Humanos , Proteínas de Ligação a Telômeros/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Testes Genéticos/métodos , Idoso , Predisposição Genética para Doença
6.
Nat Genet ; 56(5): 877-888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714869

RESUMO

Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.


Assuntos
Cromossomos Humanos Par 15 , Elementos Facilitadores Genéticos , MicroRNAs , Repetições de Microssatélites , Mutação , Tireotropina , Animais , Feminino , Humanos , Masculino , Cromossomos Humanos Par 15/genética , MicroRNAs/genética , Repetições de Microssatélites/genética , Linhagem , Primatas/genética , Glândula Tireoide/metabolismo , Tireotropina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA