Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339016

RESUMO

Y-box-binding proteins (YB proteins) are multifunctional DNA- and RNA-binding proteins that play an important role in the regulation of gene expression. The high homology of their cold shock domains and the similarity between their long, unstructured C-terminal domains suggest that Y-box-binding proteins may have similar functions in a cell. Here, we consider the functional interchangeability of the somatic YB proteins YB-1 and YB-3. RNA-seq and Ribo-seq are used to track changes in the mRNA abundance or mRNA translation in HEK293T cells solely expressing YB-1, YB-3, or neither of them. We show that YB proteins have a dual effect on translation. Although the expression of YB proteins stimulates global translation, YB-1 and YB-3 inhibit the translation of their direct CLIP-identified mRNA targets. The impact of YB-1 and YB-3 on the translation of their mRNA targets is similar, which suggests that they can substitute each other in inhibiting the translation of their mRNA targets in HEK293T cells.


Assuntos
Proteínas de Ligação a DNA , Biossíntese de Proteínas , Humanos , Células HEK293 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
2.
Biochemistry (Mosc) ; 87(Suppl 1): S48-S167, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35501986

RESUMO

YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.


Assuntos
Biossíntese de Proteínas , Proteína 1 de Ligação a Y-Box , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mamíferos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
3.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915887

RESUMO

The methylation of adenosine in the N6 position (m6A) is a widely used modification of eukaryotic mRNAs. Its importance for the regulation of mRNA translation was put forward recently, essentially due to the ability of methylated mRNA to be translated in conditions of inhibited cap-dependent translation initiation, e.g., under stress. However, the peculiarities of translation initiation on m6A-modified mRNAs are not fully known. In this study, we used toeprinting and translation in a cell-free system to confirm that m6A-modified mRNAs can be translated in conditions of suppressed cap-dependent translation. We show for the first time that m6A-modified mRNAs display not only decreased elongation, but also a lower efficiency of translation initiation. Additionally, we report relative resistance of m6A-mRNA translation initiation in the absence of ATP and inhibited eIF4A activity. Our novel findings indicate that the scanning of m6A-modified leader sequences is performed by a noncanonical mechanism.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Células HEK293 , Humanos , Metilação
4.
Data Brief ; 42: 108187, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35516002

RESUMO

N6-methyladenosine (m6A) is the most abundant, highly dynamic mRNA modification that regulates mRNA splicing, stability, and translation. The m6A epigenetic mark is erased by RNA demethylases ALKBH5 (AlkB Homolog 5) and FTO (Fat mass and obesity-associated protein). The ALKBH5 and FTO RNA demethylases recognize m6A in similar nucleotide contexts. Therefore, these proteins can partially substitute for each other. To assess the impact of total m6A demethylation failure we performed high-throughput sequencing of cytoplasmic RNA from ALKBH5 and FTO double knockout and wild type HEK293T cells. The RNA-Seq libraries were sequenced on Illumina NextSeq 500, trimmed, and mapped to the human genome. The consequent read counting and differential expression analysis in the R environment detected 5871 differentially expressed and 166 alternatively spliced genes comparing double knockout against wild type HEK293T cells. Raw data are deposited in NCBI Gene Expression Omnibus (GEO) repository under GEO accession GSE198050.

5.
Biomolecules ; 10(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290447

RESUMO

Y-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization. In addition, recent data on the structural peculiarities of YB proteins underlying their interactions with nucleic acids are discussed.


Assuntos
Biossíntese de Proteínas/genética , Estabilidade de RNA/genética , Ribonucleoproteínas/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Humanos , Ligação Proteica , Proteína 1 de Ligação a Y-Box/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA