Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(6): 3283-3290, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724111

RESUMO

We investigated the suitability of the graphitic carbon (GC) content of diesel particulate matter (DPM), measured using Raman spectroscopy, as a surrogate measure of elemental carbon (EC) determined by thermal optical analysis. The Raman spectra in the range of 800-1800 cm-1 (including the D mode at ∼1322 cm-1 and the G mode at ∼1595 cm-1) were used for GC identification and quantification. Comparison of the Raman spectra for two certified DPM standards (NIST SRM 1650 and SRM 2975), two types of diesel engine exhaust soot, and three types of DPM-enriched workplace aerosols show that the uncertainty of GC quantification based on the D peak height, G peak height, and the total peak area below D and G peaks was about 6.0, 6.7, and 6.9%, respectively. The low uncertainty for different aerosol types suggested possible use of GC as a surrogate measure of EC in workplace atmospheres. A calibration curve was constructed using two laboratory-aerosolized DPM standards to describe the relationship between GC measured by a portable Raman spectrometer and the EC concentration determined by NIOSH Method 5040. The calibration curve was then applied to determine GC-based estimates of the EC contents of diesel engine exhaust samples from two vehicles and seven air samples collected at a hydraulic fracturing worksite. The GC-EC estimates obtained through Raman measurements agreed well with those found by NIOSH Method 5040 for the same samples at EC filter loadings below 2.86 µg/cm2. The study shows that using an appropriate sample collection method that avoids high filter mass loadings, onsite measurement of GC by a portable or hand-held Raman spectrometer can provide a useful indicator of EC in workplace aerosol.

2.
Am J Ind Med ; 65(1): 3-11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647336

RESUMO

Exposure science is fundamental to the field of occupational safety and health. The measurement of worker exposures to hazardous agents informs effective workplace risk mitigation strategies. The modern era of occupational exposure measurement began with the invention of the personal sampling device, which is still widely used today in the practice of occupational hygiene. Newer direct-reading sensor devices are incorporating recent advances in transducers, nanomaterials, electronics miniaturization, portability, batteries with high-power density, wireless communication, energy-efficient microprocessing, and display technology to usher in a new era in exposure science. Commercial applications of new sensor technologies have led to a variety of health and lifestyle management devices for everyday life. These applications are also being investigated as tools to measure occupational and environmental exposures. As the next-generation placeable, wearable, and implantable sensor technologies move from the research laboratory to the workplace, their role in the future of work will be of increasing importance to employers, workers, and occupational safety and health researchers and practitioners. This commentary discusses some of the benefits and challenges of placeable, wearable, and implantable sensor technologies in the future of work.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Dispositivos Eletrônicos Vestíveis , Humanos , Exposição Ocupacional/efeitos adversos , Tecnologia , Local de Trabalho
3.
Am J Ind Med ; 65(9): 749-761, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35735247

RESUMO

BACKGROUND: Oil and gas extraction (OGE) workers in the United States experience high fatality rates, with motor vehicle crashes the leading cause of death. Land-based OGE workers drive frequently to remote and temporary worksites. Limited information is available on factors that may influence crash risk for this workforce. METHODS: A cross-sectional survey of 500 land-based OGE workers examined work schedules and hours, commuting, sleep, employer policies, and their relationship to potentially harmful events while driving. RESULTS: Over 60% of participants worked 12 or more hours per day. The mean daily roundtrip commuting time was 1.82 h. Longer daily commutes, nonstandard work schedules, less sleep on workdays, and lack of employer policies were associated with one or more risky driving-related outcomes. CONCLUSIONS: Implementation and evaluation of OGE employer policies and programs to limit long work hours, reduce long daily commutes, promote sufficient sleep, and reduce drowsy driving among U.S. OGE workers are needed.


Assuntos
Condução de Veículo , Acidentes de Trânsito , Estudos Transversais , Humanos , Admissão e Escalonamento de Pessoal , Meios de Transporte , Estados Unidos/epidemiologia
4.
J Occup Environ Hyg ; 19(10-11): 676-689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36095237

RESUMO

Numerous health and safety hazards exist at U.S. onshore oil and gas extraction worksites. Higher fatal injury rates have been reported among drilling and servicing companies, which are more likely to employ workers in construction and extraction occupations, compared to operators that employ more workers in management and office and administrative support roles. However, there is little information describing the extent to which workers encounter these hazards, are provided hazard mitigation strategies by their employers, or use personal protective equipment (PPE). A cross-sectional survey of 472 U.S. oil and gas extraction workers was conducted to identify and characterize factors related to on-the-job fatalities, injuries, and illnesses and determine workers' health and safety concerns. Workers were employed by servicing companies (271/472, 57.4%), drilling contractors (106/472, 22.5%), and operators (95/472, 20.1%). The likelihood of contact with hazardous substances varied by substance and company type. Drilling and servicing employees had significantly higher odds of self-reported contact with pipe dope (ORdrilling = 10.07, 95% CI: 1.74-63.64; ORservicing = 5.95, 95% CI: 2.18-18.34), diesel exhaust (ORdrilling = 2.28, 95% CI: 1.15-5.05; ORservicing = 4.93, 95% CI: 2.73-10.32), and drilling mud (ORdrilling = 24.36, 95% CI: 4.45-144.69; ORservicing = 3.48, 95% CI: 1.24-12.20), compared to operators. Safety policies, programs, and trainings were commonly reported by workers, although substance-specific training (e.g., respirable crystalline silica hazards) was less common. Differences in self-reported employer PPE requirements and worker use of PPE when needed or required for safety highlight a need for novel strategies to improve the use of PPE. Overall, this study highlights differences in work conditions by company type and uncovers gaps in employer administrative controls and PPE use.


Assuntos
Saúde Ocupacional , Humanos , Autorrelato , Estudos Transversais , Local de Trabalho , Emissões de Veículos
5.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068622

RESUMO

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Areia/química , Silicose/etiologia , Traqueia/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Poeira , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Pneumonia/induzido quimicamente , Quartzo/efeitos adversos , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/efeitos adversos
6.
J Oncol Pharm Pract ; 25(5): 1152-1159, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29950149

RESUMO

OBJECTIVES: In order to produce near real-time onsite results to detect surface contamination by antineoplastic drugs, the National Institute for Occupational Safety and Health developed monitors for 5-fluorouracil, which use surface wiping and lateral flow immunoassay for measurement. The monitors were tested in the laboratory to assess the sensitivity of detection on laboratory-produced contaminated surfaces. A field evaluation to assess the capability of the monitors to make measurements in healthcare workplaces was carried out in collaboration with a medical device company and the results are presented in this report. METHODS: The 5-fluorouracil monitor was evaluated in areas where oncology drugs were prepared and administered to patients at five different hospitals. The levels of contamination measured with the monitors were compared to levels measured with liquid chromatography-tandem mass spectrometry. RESULTS: The 5-fluorouracil values measured with the liquid chromatography-tandem mass spectrometry ranged from 0 to over 200,000 ng/100 cm2. Measurements by the 5-fluorouracil monitors in the range 10-100 ng/100 cm2 correlated with the liquid chromatography-tandem mass spectrometry. Receiver operating characteristic curves developed for the data indicated that a positive limit of 22 ng/100 cm2 would give an acceptable level of false-positives while retaining most true-positive samples. If the liquid chromatography-tandem mass spectrometry measured greater than 100 ng/100 cm2, then the monitors also measured levels greater than 100 ng/100 cm2 for the majority of samples. CONCLUSION: The data indicate that there are many areas in hospitals that are contaminated with 5-fluorouracil and the monitors will be useful in identifying this contamination.


Assuntos
Antineoplásicos/análise , Contaminação de Equipamentos , Fluoruracila/análise , Exposição Ocupacional/análise , Antineoplásicos/química , Cromatografia Líquida/métodos , Hospitais , Humanos , Saúde Ocupacional , Local de Trabalho
7.
Am J Ind Med ; 62(5): 439-447, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31016761

RESUMO

Recent increases in the rate of drug overdose-related deaths, the emergence of potent opioids such as carfentanil, and media reports of incidents have raised concerns about the potential for work-related exposure to a variety of illicit drugs among law enforcement officers (LEOs), other emergency responders, and other workers in the United States. To characterize the risk associated with unintentional occupational exposure to drugs, we retrospectively investigated two incidents that occurred in 2017 and 2018 where LEOs were exposed to opioid and stimulant drugs and experienced health effects. We interviewed five affected LEOs and others. We reviewed records, including emergency department documentation, incident reports, forensic laboratory results, and when available, body camera footage. Multiple drug types, including opioids and nonopioids, were present at each incident. Potential routes of exposure varied among LEOs and were difficult to characterize with certainty. Health effects were not consistent with severe, life-threatening opioid toxicity, but temporarily precluded affected LEOs from performing their essential job duties. While health risks from occupational exposure to drugs during law enforcement activities cannot currently be fully characterized with certainty, steps to prevent such exposures should be implemented now. The creation and implementation of appropriate controls plus education and training are both important to protecting first responders from these hazardous agents. To more fully characterize potential exposures, timely prospective toxicological evaluation of affected responders is recommended.


Assuntos
Analgésicos Opioides/efeitos adversos , Exposição Ocupacional/efeitos adversos , Polícia , Overdose de Drogas/etiologia , Humanos , Aplicação da Lei , National Institute for Occupational Safety and Health, U.S. , Estados Unidos
8.
J Occup Environ Hyg ; 15(1): 63-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053946

RESUMO

Diesel engines serve many purposes in modern oil and gas extraction activities. Diesel particulate matter (DPM) emitted from diesel engines is a complex aerosol that may cause adverse health effects depending on exposure dose and duration. This study reports on personal breathing zone (PBZ) and area measurements for DPM (expressed as elemental carbon) during oil and gas extraction operations including drilling, completions (which includes hydraulic fracturing), and servicing work. Researchers at the National Institute for Occupational Safety and Health (NIOSH) collected 104 full-shift air samples (49 PBZ and 55 area) in Colorado, North Dakota, Texas, and New Mexico during a four-year period from 2008-2012. The arithmetic mean (AM) of the full shift TWA PBZ samples was 10 µg/m3; measurements ranged from 0.1-52 µg/m3. The geometric mean (GM) for the PBZ samples was 7 µg/m3. The AM of the TWA area measurements was 17 µg/m3 and ranged from 0.1-68 µg/m3. The GM for the area measurements was 9.5 µg/m3. Differences between the GMs of the PBZ samples and area samples were not statistically different (P > 0.05). Neither the Occupational Safety and Health Administration (OSHA), NIOSH, nor the American Conference of Governmental Industrial Hygienists (ACGIH) have established occupational exposure limits (OEL) for DPM. However, the State of California, Department of Health Services lists a time-weighted average (TWA) OEL for DPM as elemental carbon (EC) exposure of 20 µg/m3. Five of 49 (10.2%) PBZ TWA measurements exceeded the 20 µg/m3 EC criterion. These measurements were collected on Sandmover and Transfer Belt (T-belt) Operators, Blender and Chemical Truck Operators, and Water Transfer Operators during hydraulic fracturing operations. Recommendations to minimize DPM exposures include elimination (locating diesel-driven pumps away from well sites), substitution, (use of alternative fuels), engineering controls using advanced emission control technologies, administrative controls (configuration of well sites), hazard communication, and worker training.


Assuntos
Exposição Ocupacional/análise , Indústria de Petróleo e Gás , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental , Humanos , Fraturamento Hidráulico , Exposição por Inalação/análise , Estados Unidos
9.
J Oncol Pharm Pract ; 22(1): 60-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25293722

RESUMO

OBJECTIVES: Contamination of workplace surfaces by antineoplastic drugs presents an exposure risk for healthcare workers. Traditional instrumental methods to detect contamination such as liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) are sensitive and accurate but expensive. Since immunochemical methods may be cheaper and faster than instrumental methods, we wanted to explore their use for routine drug residue detection for preventing worker exposure. METHODS: In this study we examined the feasibility of using fluorescence covalent microbead immunosorbent assay (FCMIA) for simultaneous detection and semi-quantitative measurement of three antineoplastic drugs (5-fluorouracil, paclitaxel, and doxorubicin). The concentration ranges for the assay were 0-1000 ng/ml for 5-fluorouracil, 0-100 ng/ml for paclitaxel, and 0-2 ng/ml for doxorubicin. The surface sampling technique involved wiping a loaded surface with a swab wetted with wash buffer, extracting the swab in storage/blocking buffer, and measuring drugs in the extract using FCMIA. RESULTS: There was no significant cross-reactivity between these drugs at the ranges studied indicated by a lack of response in the assay to cross analytes. The limit of detection (LOD) for 5-fluorouracil on the surface studied was 0.93 ng/cm(2) with a limit of quantitation (LOQ) of 2.8 ng/cm(2), the LOD for paclitaxel was 0.57 ng/cm(2) with an LOQ of 2.06 ng/cm(2), and the LOD for doxorubicin was 0.0036 ng/cm(2) with an LOQ of 0.013 ng/cm(2). CONCLUSION: The use of FCMIA with a simple sampling technique has potential for low cost simultaneous detection and semi-quantitative measurement of surface contamination from multiple antineoplastic drugs.


Assuntos
Antineoplásicos/química , Contaminação de Medicamentos/prevenção & controle , Exposição Ocupacional/análise , Cromatografia Líquida/métodos , Doxorrubicina/química , Fluoruracila/química , Humanos , Técnicas de Imunoadsorção , Limite de Detecção , Microesferas , Paclitaxel/química , Espectrometria de Massas em Tandem/métodos , Local de Trabalho
10.
J Oncol Pharm Pract ; 22(3): 396-408, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25956418

RESUMO

OBJECTIVES: Contamination of workplace surfaces by antineoplastic drugs presents an exposure risk for healthcare workers. Traditional instrumental methods to detect contamination such as gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS) are sensitive and accurate but expensive and incapable of producing results in real time. This limits their utility in preventing worker exposure. We are currently developing monitors based on lateral flow immunoassay that can detect drug contamination in near real time. In this report, we describe the laboratory performance of a 5-fluorouracil (5-FU) monitor. METHODS: The monitor was evaluated by spiking ceramic, vinyl, composite, stainless steel, and glass surfaces of 100 cm(2) area with 5-FU masses of 0, 5, 10, 25, 50, and 100 ng. The surface was sampled with a wetted cotton swab, the swab was extracted with buffer, and the resulting solution was applied to a lateral flow monitor. Two ways of evaluating the response of these monitors were used: an electronic method where a lateral flow reader was used for measuring line intensities, and a visual method where the intensity of the test line was visually compared to the control line. RESULTS: The 5-FU monitor is capable of detecting 10 ng/100 cm(2) (0.1 ng/cm(2)) using the electronic reader and 25 ng/100 cm(2) (0.25 ng/cm(2)) using the visual comparison method for the surfaces studied. The response of the monitors was compared to LC-MS/MS results for the same samples for validation and there was good correlation of the two methods but some differences in absolute response, especially at higher spiking levels for the surface samples.


Assuntos
Antineoplásicos/análise , Química Farmacêutica/métodos , Sistemas Computacionais , Contaminação de Medicamentos , Fluoruracila/análise , Local de Trabalho/normas , Antineoplásicos/química , Cromatografia Líquida/métodos , Fluoruracila/química , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
11.
J Occup Environ Hyg ; 12(1): 45-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25379615

RESUMO

Surface contamination from methamphetamine in meth labs continues to be a problem. We had previously developed a lateral flow assay cassette for field detection of methamphetamine contamination that is commercially available and has been used by a number of groups to assess contamination. This cassette uses the complete disappearance of the test line as an end point for detection of 50 ng/100 cm2 of methamphetamine contamination for surface sampling with cotton swabs. In the present study, we further evaluate the response of the cassettes using an electronic lateral flow reader to measure the intensities of the test and control lines. The cassettes were capable of detecting 0.25 ng/ml for calibration solutions. For 100 cm2 ceramic tiles that were spiked with methamphetamine and wiped with cotton-tipped wooden swabs wetted in assay/sampling buffer, 1 ng/tile was detected using the reader. Semi-quantitative results can be produced over the range 0-10 ng/ml for calibration solutions and 0-25 ng/tile for spiked tiles using either a 4-parameter logistic fit of test line intensity versus concentration or spiked mass or the ratio of the control line to the test line intensity fit to concentration or spiked mass. Recovery from the tiles was determined to be about 30% using the fitted curves. Comparison of the control line to the test line was also examined as a possible visual detection end point and it was found that the control line became more intense than the test line at 0.5 to 1 ng/ml for calibration solutions or 1 to 2 ng/tile for spiked tiles. Thus the lateral flow cassettes for methamphetamine have the potential to produce more sensitive semi-quantitative results if an electronic lateral flow reader is used and can be more sensitive for detection if the comparison of the control line to the test line is used as the visual end point.


Assuntos
Imunoensaio/instrumentação , Imunoensaio/métodos , Metanfetamina/análise , Calibragem , Exposição Ambiental , Sensibilidade e Especificidade , Propriedades de Superfície
12.
Ann Occup Hyg ; 58(7): 830-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24906357

RESUMO

Turnout gear provides protection against dermal exposure to contaminants during firefighting; however, the level of protection is unknown. We explored the dermal contribution to the systemic dose of polycyclic aromatic hydrocarbons (PAHs) and other aromatic hydrocarbons in firefighters during suppression and overhaul of controlled structure burns. The study was organized into two rounds, three controlled burns per round, and five firefighters per burn. The firefighters wore new or laundered turnout gear tested before each burn to ensure lack of PAH contamination. To ensure that any increase in systemic PAH levels after the burn was the result of dermal rather than inhalation exposure, the firefighters did not remove their self-contained breathing apparatus until overhaul was completed and they were >30 m upwind from the burn structure. Specimens were collected before and at intervals after the burn for biomarker analysis. Urine was analyzed for phenanthrene equivalents using enzyme-linked immunosorbent assay and a benzene metabolite (s-phenylmercapturic acid) using liquid chromatography/tandem mass spectrometry; both were adjusted by creatinine. Exhaled breath collected on thermal desorption tubes was analyzed for PAHs and other aromatic hydrocarbons using gas chromatography/mass spectrometry. We collected personal air samples during the burn and skin wipe samples (corn oil medium) on several body sites before and after the burn. The air and wipe samples were analyzed for PAHs using a liquid chromatography with photodiode array detection. We explored possible changes in external exposures or biomarkers over time and the relationships between these variables using non-parametric sign tests and Spearman tests, respectively. We found significantly elevated (P < 0.05) post-exposure breath concentrations of benzene compared with pre-exposure concentrations for both rounds. We also found significantly elevated post-exposure levels of PAHs on the neck compared with pre-exposure levels for round 1. We found statistically significant positive correlations between external exposures (i.e. personal air concentrations of PAHs) and biomarkers (i.e. change in urinary PAH metabolite levels in round 1 and change in breath concentrations of benzene in round 2). The results suggest that firefighters wearing full protective ensembles absorbed combustion products into their bodies. The PAHs most likely entered firefighters' bodies through their skin, with the neck being the primary site of exposure and absorption due to the lower level of dermal protection afforded by hoods. Aromatic hydrocarbons could have been absorbed dermally during firefighting or inhaled during the doffing of gear that was off-gassing contaminants.


Assuntos
Benzeno/análise , Bombeiros , Incêndios , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ocupacionais do Ar/análise , Benzeno/toxicidade , Biomarcadores/urina , Monitoramento Ambiental/métodos , Humanos , Exposição por Inalação/análise , Exposição Ocupacional/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Roupa de Proteção , Absorção Cutânea
13.
Mil Med ; 178(1): 68-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23356122

RESUMO

The disaster environment frequently presents rapidly evolving and unpredictable hazardous exposures to emergency responders. Improved estimates of exposure and effect from biomonitoring can be used to assess exposure-response relationships, potential health consequences, and effectiveness of control measures. Disaster settings, however, pose significant challenges for biomonitoring. A decision process for determining when to conduct biomonitoring during and following disasters was developed. Separate but overlapping decision processes were developed for biomonitoring performed as part of occupational health investigations that directly benefit emergency responders in the short term and for biomonitoring intended to support research studies. Two categories of factors critical to the decision process for biomonitoring were identified: Is biomonitoring appropriate for the intended purpose and is biomonitoring feasible under the circumstances of the emergency response? Factors within these categories include information needs, relevance, interpretability, ethics, methodology, and logistics. Biomonitoring of emergency responders can be a valuable tool for exposure and risk assessment. Information needs, relevance, and interpretability will largely determine if biomonitoring is appropriate; logistical factors will largely determine if biomonitoring is feasible. The decision process should be formalized and may benefit from advance planning.


Assuntos
Socorristas , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Medição de Risco/métodos , Biomarcadores/análise , Desastres , Exposição Ambiental/análise , Humanos
14.
J Occup Environ Hyg ; 10(7): 347-56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23679563

RESUMO

This report describes a previously uncharacterized occupational health hazard: work crew exposures to respirable crystalline silica during hydraulic fracturing. Hydraulic fracturing involves high pressure injection of large volumes of water and sand, and smaller quantities of well treatment chemicals, into a gas or oil well to fracture shale or other rock formations, allowing more efficient recovery of hydrocarbons from a petroleum-bearing reservoir. Crystalline silica ("frac sand") is commonly used as a proppant to hold open cracks and fissures created by hydraulic pressure. Each stage of the process requires hundreds of thousands of pounds of quartz-containing sand; millions of pounds may be needed for all zones of a well. Mechanical handling of frac sand creates respirable crystalline silica dust, a potential exposure hazard for workers. Researchers at the National Institute for Occupational Safety and Health collected 111 personal breathing zone samples at 11 sites in five states to evaluate worker exposures to respirable crystalline silica during hydraulic fracturing. At each of the 11 sites, full-shift samples exceeded occupational health criteria (e.g., the Occupational Safety and Health Administration calculated permissible exposure limit, the NIOSH recommended exposure limit, or the ACGIH threshold limit value), in some cases, by 10 or more times the occupational health criteria. Based on these evaluations, an occupational health hazard was determined to exist for workplace exposures to crystalline silica. Seven points of dust generation were identified, including sand handling machinery and dust generated from the work site itself. Recommendations to control exposures include product substitution (when feasible), engineering controls or modifications to sand handling machinery, administrative controls, and use of personal protective equipment. To our knowledge, this represents the first systematic study of work crew exposures to crystalline silica during hydraulic fracturing. Companies that conduct hydraulic fracturing using silica sand should evaluate their operations to determine the potential for worker exposure to respirable crystalline silica and implement controls as necessary to protect workers.


Assuntos
Indústrias Extrativas e de Processamento , Exposição por Inalação/análise , Exposição Ocupacional/análise , Dióxido de Silício/análise , Análise de Variância , Humanos , Medição de Risco , Tempo (Meteorologia)
15.
J Occup Environ Hyg ; 10(12): 663-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24195533

RESUMO

An exposure assessment of hot-mix asphalt (HMA) paving workers was conducted to determine which of four exposure scenarios impacted worker exposure and dose. Goals of this report are to present the personal-breathing zone (PBZ) data, discuss the impact of substituting the releasing/cleaning agent, and discuss work practices that resulted in the highest exposure concentration for each analyte. One-hundred-seven PBZ samples were collected from HMA paving workers on days when diesel oil was used as a releasing/cleaning agent. An additional 36 PBZ samples were collected on days when B-100 (100% biodiesel, containing no petroleum-derived products) was used as a substitute releasing/cleaning agent. Twenty-four PBZ samples were collected from a reference group of concrete workers, who also worked in outdoor construction but had no exposure to asphalt emissions. Background and field blank samples were also collected daily. Total particulates and the benzene soluble fraction were determined gravimetrically. Total organic matter was determined using gas chromatography (GC) with flame ionization detection and provided qualitative information about other exposure sources contributing to worker exposure besides asphalt emissions. Thirty-three individual polycyclic aromatic compounds (PACs) were determined using GC with time-of-flight mass spectrometry; results were presented as either the concentration of an individual PAC or a summation of the individual PACs containing either 2- to 3-rings or 4- to 6-rings. Samples were also screened for PACs containing 4- to 6-rings using fluorescence spectroscopy. Arithmetic means, medians, and box plots of the PBZ data were used to evaluate trends in the data. Box plots illustrating the diesel oil results were more variable than the B-100. Also, the highest diesel oil results were much higher in concentration than the highest B-100 results. An analysis of the highest exposure results and field notes revealed a probable association between these exposures and the use of diesel oil, use of a diesel-powered screed, elevated HMA paving application temperatures, lubricating and working on broken-down equipment, and operation of a broom machine.


Assuntos
Poluentes Ocupacionais do Ar/análise , Hidrocarbonetos , Exposição por Inalação/análise , Exposição Ocupacional/análise , Compostos Policíclicos/análise , Emissões de Veículos/análise , Humanos
16.
Ann Work Expo Health ; 67(3): 379-391, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36617226

RESUMO

Low-cost particulate matter (PM) sensors provide new methods for monitoring occupational exposure to hazardous substances, such as flour dust. These devices have many possible benefits, but much remains unknown about their performance for different exposure monitoring strategies in the workplace. We explored the performance of PM sensors for four different monitoring strategies (time-weighted average and high time resolution, each quantitative and semi-quantitative) for assessing occupational exposure using low-cost PM sensors in a field study in the industrial bakery sector. Measurements were collected using four types of sensor (PATS+, Isensit, Airbeam2, and Munisense) and two reference devices (respirable gravimetric samplers and an established time-resolved device) at two large-scale bakeries, spread over 11 participants and 6 measurement days. Average PM2.5 concentrations of the low-cost sensors were compared with gravimetric respirable concentrations for 8-h shift periods and 1-min PM2.5 concentrations of the low-cost sensors were compared with time-resolved PM2.5 data from the reference device (quantitative monitoring strategy). Low-cost sensors were also ranked in terms of exposure for 8-h shifts and for 15-min periods with a shift (semi-quantitative monitoring strategy). Environmental factors and methodological variables, which can affect sensor performance, were investigated. Semi-quantitative monitoring strategies only showed more accurate results compared with quantitative strategies when these were based on shift-average exposures. The main factors that influenced sensor performance were the type of placement (positioning the devices stationary versus personal) and the company or workstation where measurements were collected. Together, these findings provide an overview of common strengths and drawbacks of low-cost sensors and different ways these can be applied in the workplace. This can be used as a starting point for further investigations and the development of guidance documents and data analysis methods.


Assuntos
Exposição Ocupacional , Material Particulado , Humanos , Material Particulado/análise , Exposição Ocupacional/análise , Poeira/análise , Farinha/análise , Substâncias Perigosas/análise , Monitoramento Ambiental/métodos
17.
Ann Occup Hyg ; 56(2): 138-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22025530

RESUMO

OBJECTIVES: We evaluated personal airborne exposures to polycyclic aromatic compounds (PACs) and total organic matter (TOM) among hot-mix asphalt (HMA) paving workers. The primary objectives of this study were to identify predictors of airborne PAC exposures, identify PAC exposure sources, and characterize how work practices may affect personal airborne exposure to PACs. METHODS: Four workers were recruited from each of three asphalt paving crews (12 workers) and were monitored for three consecutive days over 4 weeks for a total of 12 sampling days per worker (144 worker-days). Three sampling weeks were conducted while maintaining standard working conditions with regard to airborne exposures. The fourth week included the substitution of biodiesel for diesel oil used to clean tools and equipment. Linear mixed-effects models were used to evaluate predictors of airborne exposures including weather parameters (air temperature, wind speed, and relative humidity), worksite conditions (HMA application temperature, work rate, asphalt grade, and biodiesel use), and personal factors (minutes sampled, minutes of downtime, and smoking status). RESULTS: Concentrations of the 33 individual PACs measured in personal air samples were generally below detection limits under all conditions with the exception of fluorene [geometric mean (GM) = 65 ng m(-3)], naphthalene (GM = 833 ng m(-3)), phenanthrene (GM = 385 ng m(-3)), and pyrene (GM = 57 ng m(-3)). The summary measures of TOM (GM = 864 µg m(-3)) and four- to six-ring PAC (GM = 0.13 µg m(-3)) were detected in the majority of air samples. Although task was not a predictor of airborne exposures, job site characteristics such as HMA application temperature were found to significantly (P ≤ 0.001) affect summary and individual PAC exposures. Based on the results of multivariate linear mixed-effects models, substituting biodiesel for diesel oil as a cleaning agent was associated with significant (P ≤ 0.01) reductions in TOM, four- to six-ring PACs, and naphthalene and pyrene concentrations that ranged from 31 to 56%. Using multivariate linear mixed-effects models under standard conditions, reducing the application temperature of HMA from 149°C (300°F) to 127°C (260°F) could be expected to reduce airborne exposures by 42-82%, varying by analyte. CONCLUSIONS: Promising strategies for reducing airborne exposures to PACs among HMA paving workers include substituting biodiesel for diesel oil as a cleaning agent and decreasing the HMA application temperature.


Assuntos
Hidrocarbonetos , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Compostos Policíclicos , Adulto , Biocombustíveis , Estudos de Coortes , Materiais de Construção , Monitoramento Ambiental/métodos , Humanos , Hidrocarbonetos/efeitos adversos , Hidrocarbonetos/análise , Masculino , Pessoa de Meia-Idade , Compostos Policíclicos/efeitos adversos , Compostos Policíclicos/análise , Adulto Jovem
18.
Ann Occup Hyg ; 56(2): 125-37, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22156568

RESUMO

OBJECTIVES: The primary objective of this study was to identify the source and work practices that affect dermal exposure to polycyclic aromatic compounds (PACs) among hot-mix asphalt (HMA) paving workers. METHODS: Four workers were recruited from each of three asphalt paving crews (12 workers) and were monitored for three consecutive days over 4 weeks for a total of 12 sampling days per worker (144 worker days). Two sampling weeks were conducted under standard conditions for dermal exposures. The third week included the substitution of biodiesel for diesel oil used to clean tools and equipment and the fourth week included dermal protection through the use of gloves, hat and neck cloth, clean pants, and long-sleeved shirts. Dermal exposure to PACs was quantified using two methods: a passive organic dermal (POD) sampler specifically developed for this study and a sunflower oil hand wash technique. Linear mixed-effects models were used to evaluate predictors of PAC exposures. RESULTS: Dermal exposures measured under all conditions via POD and hand wash were low with most samples for each analyte being below the limit of the detection with the exception of phenanthrene and pyrene. The geometric mean (GM) concentrations of phenanthrene were 0.69 ng cm(-2) on the polypropylene layer of the POD sampler and 1.37 ng cm(-2) in the hand wash sample. The GM concentrations of pyrene were 0.30 ng cm(-2) on the polypropylene layer of the POD sampler and 0.29 ng cm(-2) in the hand wash sample. Both the biodiesel substitution and dermal protection scenarios were effective in reducing dermal exposures. Based on the results of multivariate linear mixed-effects models, increasing frequency of glove use was associated with significant (P < 0.0001) reductions for hand wash and POD phenanthrene and pyrene concentrations; percent reductions ranged from 40 to 90%. Similar reductions in hand wash concentrations of phenanthrene (P = 0.01) and pyrene (P = 0.003) were observed when biodiesel was substituted for diesel oil as a cleaning agent, although reductions were not significant for the POD sampler data. Although task was not a predictor of dermal exposure, job site characteristics such as HMA application temperature, asphalt grade, and asphalt application rate (tons per hour) were found to significantly affect exposure. Predictive models suggest that the combined effect of substituting biodiesel for diesel oil as a cleaning agent, frequent glove use, and reducing the HMA application temperature from 149°C (300°F) to 127°C (260°F) may reduce dermal exposures by 76-86%, varying by analyte and assessment method. CONCLUSIONS: Promising strategies for reducing dermal exposure to PACs among asphalt paving workers include requiring the use of dermal coverage (e.g. wearing gloves and/or long sleeves), substituting biodiesel for diesel oil as a cleaning agent, and decreasing the HMA application temperature.


Assuntos
Hidrocarbonetos , Exposição Ocupacional/prevenção & controle , Compostos Policíclicos/análise , Absorção Cutânea , Adulto , Poluentes Ocupacionais do Ar , Biocombustíveis , Estudos de Coortes , Materiais de Construção , Monitoramento Ambiental/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Compostos Policíclicos/efeitos adversos , Adulto Jovem
19.
Ann Occup Hyg ; 56(9): 1013-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23002274

RESUMO

INTRODUCTION: Paving workers are exposed to polycyclic aromatic compounds (PACs) while working with hot-mix asphalt (HMA). Further characterization of the source and route of these exposures is necessary to guide exposure-reduction strategies. METHODS: Personal air (n=144), hand-wash (n=144), and urine (n=480) samples were collected from 12 paving workers over 3 workdays during 4 workweeks. Urine samples were collected at preshift, postshift, and bedtime and analyzed for 10 hydroxylated PACs (1-OH-pyrene; 1-, 2-, 3-, 4-OH-phenanthrene; 1-, 2-OH-naphthalene; 2-, 3-, 9-OH-fluorene) by an immunochemical quantification of PACs (I-PACs). The air and hand-wash samples were analyzed for the parent compounds corresponding to the urinary analytes. Using a crossover study design, each of the 4 weeks represented a different exposure scenario: a baseline week (normal conditions), a dermal protection week (protective clothing), a powered air-purifying respirator (PAPR) week, and a biodiesel substitution week (100% biodiesel provided to replace the diesel oil normally used by workers to clean tools and equipment). The urinary analytes were analyzed using linear mixed-effects models. RESULTS: Postshift and bedtime concentrations were significantly higher than preshift concentrations for most urinary biomarkers. Compared with baseline, urinary analytes were reduced during the dermal protection (29% for 1-OH-pyrene, 15% for I-PACs), the PAPR (24% for 1-OH-pyrene, 15% for I-PACs), and the biodiesel substitution (15% for 1-OH-pyrene) weeks. The effect of PACs in air was different by exposure scenario (biodiesel substitution>dermal protection>PAPR and baseline) and was still a significant predictor of most urinary analytes during the week of PAPR use, suggesting that PACs in air were dermally absorbed. The application temperature of HMA was positively associated with urinary measures, such that an increase from the lowest application temperature (121°C) to the highest (154°C) was associated with a 72% increase in ΣOH-fluorene and 1-OH-pyrene and an 82% increase in ΣOH-phenanthrene. Though PACs in hand-wash samples were not predictors of urinary analytes, the effects observed during the PAPR scenario and the week of increased dermal protection provide evidence of dermal absorption. CONCLUSIONS: Our results provide evidence that PACs in air are dermally absorbed. Reducing the application temperature of asphalt mix appears to be a promising strategy for reducing PAC exposure among paving workers. Additional reductions may be achieved by requiring increased dermal coverage of workers and by substituting biodiesel for diesel oil as a cleaning agent.


Assuntos
Biomarcadores/urina , Exposição Ocupacional/prevenção & controle , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Adulto , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/urina , Biocombustíveis/toxicidade , Biomarcadores/análise , Estudos Cross-Over , Monitoramento Ambiental/métodos , Humanos , Hidrocarbonetos/toxicidade , Exposição por Inalação/análise , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/urina , Absorção Cutânea
20.
Ann Work Expo Health ; 66(8): 1022-1032, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35552627

RESUMO

OBJECTIVES: Despite a rise in automation, workers in the petroleum refining and petrochemical manufacturing industry are potentially exposed to various chemicals through inhalation while performing routine job duties. Many factors contribute to the degree of exposure experienced in this setting. The study objective was to characterize the impact of workplace conditions, anthropometric variability, and task orientation on exposure for a simulated routine operations task. METHODS: A chemical exposure laboratory simulation study was designed to evaluate the dependent variable of chemical exposure level in the breathing zone for methane and sulfur hexafluoride. The independent variables were (i) posture of the worker, (ii) worker anthropometry, (iii) process configuration, and (iv) gas density. RESULTS: Pipe height was a significant predictor of gas concentration measured in the breathing zone when located in a position that encouraged the gas to enter the breathing zone of the worker. Worker anthropometry had a major impact; tall worker's (male) chemical concentrations exceeded those of the short worker (female) for methane simulations but the opposite resulted for sulfur hexafluoride. Also, worker posture had a significant impact on gas exposure where nonneutral postures were found to have higher levels of chemical concentration. CONCLUSIONS: The study findings indicate that the breathing zone location is altered by posture and worker height, which changes the exposures relative to the emission source depending on the gas density of the chemicals that are present. As a result, qualitative risk assessment cannot be performed accurately without accounting for these factors. Practically, controls may need to account for worker size differences and posture adaptations.


Assuntos
Exposição Ocupacional , Petróleo , Indústria Química , Ergonomia , Feminino , Humanos , Masculino , Metano , Postura , Hexafluoreto de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA