RESUMO
We demonstrate that full temporal characterisation of few-cycle electromagnetic pulses, including retrieval of the carrier envelope phase (CEP), can be directly obtained from Frequency Resolved Optical Gating (FROG) techniques in which the interference between non-linear frequency mixing processes is resolved. We derive a framework for this scheme, defined Real Domain FROG (ReD-FROG), for the cases of interference between sum and difference frequency components and between fundamental and sum / difference frequency components. A successful numerical demonstration of ReD-FROG as applied to the case of a self-referenced measurement is provided. A proof-of-principle experiment is performed in which the CEP of a single-cycle THz pulse is accurately obtained and demonstrates the possibility for THz detection beyond optical probe duration limitations inherent to electro-optic sampling.
RESUMO
A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the χ(2)-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system.
RESUMO
The original version of this Article contained an error in the abstract, referring to "multi-megawatt-per-metre" instead of "multi-megavolt-per-metre". This has now been corrected in both the PDF and HTML versions of the Article.
RESUMO
The sub-luminal phase velocity of electromagnetic waves in free space is generally unobtainable, being closely linked to forbidden faster than light group velocities. The requirement of sub-luminal phase-velocity in laser-driven particle acceleration schemes imposes a limit on the total acceleration achievable in free space, and necessitates the use of dispersive structures or waveguides for extending the field-particle interaction. We demonstrate a travelling source approach that overcomes the sub-luminal propagation limits. The approach exploits ultrafast optical sources with slow group velocity propagation, and a group-to-phase front conversion through nonlinear optical interaction. The concept is demonstrated with two terahertz generation processes, nonlinear optical rectification and current-surge rectification. We report measurements of longitudinally polarised single-cycle electric fields with phase and group velocity between 0.77c and 1.75c. The ability to scale to multi-megavolt-per-metre field strengths is demonstrated. Our approach paves the way towards the realisation of cheap and compact particle accelerators with femtosecond scale control of particles.Controlled generation of terahertz radiation with subluminal phase velocities is a key issue in laser-driven particle acceleration. Here, the authors demonstrate a travelling-source approach utilizing the group-to-phase front conversion to overcome the sub-luminal propagation limit.
RESUMO
The integrated photoluminescence intensity in thin films of 'Super Yellow' copolymer has been analyzed using a Mott-like temperature dependence. This has enabled us to observe contributions from two emission channels, indicative of exciton recombination proceeding from two distinct origins. At high temperature, interchain thermally activated exciton energy transfer and migration dominates, resulting in large scale quenching of the integrated emission intensity and hence the photoluminescence quantum yield. However, at relatively low temperature, an additional increase of the integrated emission intensity occurs. This new channel of emission has been attributed to recombination from excitons where intrachain exciton energy transfer between adjacent subunits of the copolymer backbone becomes hindered. The activation energy barriers that control both of these emission channels have been obtained and are correlated with chain backbone degrees of freedom.