Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuroophthalmology ; 48(5): 352-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145319

RESUMO

Leukaemic optic neuropathy is an uncommon cause of visual loss which represents a neuro-oncological emergency with the potential of irreversible blindness if untreated. It can be difficult to diagnose, often presenting with normal neuroradiological and cerebrospinal fluid findings. We present the case of a 26-year-old woman with T-cell acute lymphoblastic leukaemia with optic neuropathy secondary to leukaemic infiltration, who demonstrated features on optical coherence tomography that aided the diagnosis of this condition. This included the presence of numerous, small, hyperreflective opacities erupting from the optic nerve head, which improved following treatment with radiotherapy and chemotherapy, and later recurred when the condition relapsed. This finding may help clinicians differentiate between other causes of optic neuropathy as well as assessing response to treatment and monitoring for recurrence.

2.
Exp Eye Res ; 127: 1-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25017185

RESUMO

Nitric oxide synthases (NOS) are involved in regulation of ocular vascular tone and blood flow. While endothelial NOS (eNOS) has recently been shown to mediate endothelium-dependent vasodilation in mouse retinal arterioles, the contribution of individual NOS isoforms to vascular responses is unknown in the retrobulbar vasculature. Moreover, it is unknown whether the lack of a single NOS isoform affects neuron survival in the retina. Thus, the goal of the present study was to examine the hypothesis that the lack of individual nitric oxide synthase (NOS) isoforms affects the reactivity of mouse ophthalmic arteries and neuron density in the retinal ganglion cell (RGC) layer. Mice deficient in one of the three NOS isoforms (nNOS-/-, iNOS-/- and eNOS-/-) were compared to respective wild type controls. Intraocular pressure (IOP) was measured in conscious mice using rebound tonometry. To examine the role of each NOS isoform for mediating vascular responses, ophthalmic arteries were studied in vitro using video microscopy. Neuron density in the RGC layer was calculated from retinal wholemounts stained with cresyl blue. IOP was similar in all NOS-deficient genotypes and respective wild type controls. In ophthalmic arteries, phenylephrine, nitroprusside and acetylcholine evoked concentration-dependent responses that did not differ between individual NOS-deficient genotypes and their respective controls. In all genotypes except eNOS-/- mice, vasodilation to acetylcholine was markedly reduced after incubation with L-NAME, a non-isoform-selective inhibitor of NOS. In contrast, pharmacological inhibition of nNOS and iNOS had no effect on acetylcholine-induced vasodilation in any of the mouse genotypes. Neuron density in the RGC layer was similar in all NOS-deficient genotypes and respective controls. Our findings suggest that eNOS contributes to endothelium-dependent dilation of murine ophthalmic arteries. However, the chronic lack of eNOS is functionally compensated by NOS-independent vasodilator mechanisms. The lack of a single NOS isoform does not appear to affect IOP or neuron density in the RGC layer.


Assuntos
Endotélio Vascular/enzimologia , Músculo Liso Vascular/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Óxido Nítrico Sintase Tipo II/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Artéria Oftálmica/fisiologia , Acetilcolina/farmacologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Contagem de Células , Inibidores Enzimáticos/farmacologia , Pressão Intraocular/fisiologia , Isoenzimas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato , Artéria Oftálmica/enzimologia , Fenilefrina/farmacologia , Células Ganglionares da Retina/citologia , Neurônios Retinianos/citologia , Tonometria Ocular , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
3.
Exp Eye Res ; 109: 60-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23434456

RESUMO

Nitric oxide synthases (NOSs) are critically involved in regulation of ocular perfusion. However, the contribution of the individual NOS isoforms to vascular responses is unknown in the retina. Because some previous findings suggested an involvement of inducible nitric oxide synthase (iNOS) in the regulation of retinal vascular tone, a major goal of the present study was to examine the hypothesis that iNOS is involved in mediating cholinergic vasodilation responses of murine retinal arterioles. Another subject of this study was to test the contribution of the other two NOS isoforms, neuronal (nNOS) and endothelial NOS (eNOS), to cholinergic retinal arteriole responses. Expression of individual NOS isoforms was determined in murine retinal arterioles using real-time PCR. All three NOS isoforms were expressed in retinal arterioles. However, eNOS mRNA was found to be most, and iNOS mRNA least abundant. To examine the functional relevance of iNOS for mediating vascular responses, retinal vascular preparations from gene-targeted iNOS-deficient mice (iNOS-/-) and wild-type mice were studied in vitro. Changes in luminal vessel diameter in response to the thromboxane mimetic 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619), the endothelium-dependent vasodilator acetylcholine, and the nitric oxide donor nitroprusside were measured by video microscopy. To determine the contribution of individual NOS isoforms to cholinergic vasodilation responses, retinas from iNOS-/- and wild-type mice were incubated with Nω-nitro-l-arginine methyl ester (l-NAME), a non-isoform-selective inhibitor of NOS, 7-nitroindazole, a selective nNOS blocker and aminoguanidine, a selective iNOS inhibitor. U-46619 evoked concentration-dependent vasoconstriction that was similar in retinal arterioles from iNOS-/- and wild-type mice. In retinal arterioles preconstricted with U-46619, acetylcholine and nitroprusside produced dose-dependent dilation that did not differ between iNOS-/- and wild-type mice. Remarkably, in both genotypes, vasodilation to acetylcholine was negligible after incubation with l-NAME. In contrast, pharmacological inhibition of nNOS and iNOS had no effect on acetylcholine-induced vasodilation. These findings suggest that dilation of murine retinal arterioles to acetylcholine is mediated predominantly by eNOS.


Assuntos
Arteríolas/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Vasos Retinianos/enzimologia , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Nitroprussiato/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Vasos Retinianos/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
4.
Am J Physiol Heart Circ Physiol ; 300(5): H1602-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21335473

RESUMO

Acetylcholine regulates perfusion of numerous organs via changes in local blood flow involving muscarinic receptor-induced release of vasorelaxing agents from the endothelium. The purpose of the present study was to determine the role of M1, M3, and M5 muscarinic acetylcholine receptors in vasodilation of small arteries using gene-targeted mice deficient in either of the three receptor subtypes (M1R(-/-), M3R(-/-), or M5R(-/-) mice, respectively). Muscarinic receptor gene expression was determined in murine cutaneous, skeletal muscle, and renal interlobar arteries using real-time PCR. Moreover, respective arteries from M1R(-/-), M3R(-/-), M5R(-/-), and wild-type mice were isolated, cannulated with micropipettes, and pressurized. Luminal diameter was measured using video microscopy. mRNA for all five muscarinic receptor subtypes was detected in all three vascular preparations from wild-type mice. However, M(3) receptor mRNA was found to be most abundant. Acetylcholine produced dose-dependent dilation in all three vascular preparations from M1R(-/-), M5R(-/-), and wild-type mice. In contrast, cholinergic dilation was virtually abolished in arteries from M3R(-/-) mice. Deletion of either M1, M3, or M5 receptor genes did not affect responses to nonmuscarinic vasodilators, such as substance P and nitroprusside. These findings provide the first direct evidence that M3 receptors mediate cholinergic vasodilation in cutaneous, skeletal muscle, and renal interlobar arteries. In contrast, neither M1 nor M5 receptors appear to be involved in cholinergic responses of the three vascular preparations tested.


Assuntos
Acetilcolina/farmacologia , Artérias/fisiologia , Receptor Muscarínico M1/fisiologia , Receptor Muscarínico M3/fisiologia , Receptor Muscarínico M5/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Artérias/efeitos dos fármacos , Relação Dose-Resposta a Droga , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Músculo Esquelético/irrigação sanguínea , Nitroprussiato/farmacologia , RNA Mensageiro/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M3/genética , Receptor Muscarínico M5/genética , Pele/irrigação sanguínea , Substância P/farmacologia , Vasodilatação/fisiologia
5.
Clin Ophthalmol ; 9: 1821-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491242

RESUMO

PURPOSE: To describe the population referred for cataract surgery, identify factors that influenced decision to treat, and patients suitable for ophthalmic training. PATIENTS AND METHODS: A total of 2,693 consecutive referrals over 6 years were interrogated using Business Objects software on cataract electronic patient records. RESULTS: A total of 2,693 patients were referred for cataract surgery (group A). Of these patients 2,132 (79%) had surgery (group B) and 561 (21%) did not (group C). Age for group B vs group C: 672 (32%) vs 115 (20%) ≤69 years, P<0.001; 803 (38%) vs 225 (40%) 70-79 years, P=0.48; 586 (27%) vs 203 (36%) 80-89 years, P<0.05; 71 (3%) vs 18 (3%) ≥90 years, P=1.0. Visual acuity, group B vs group C: 556 (26%) vs 664 (59%) 6/12 or better; 1,275 (60%) vs 367 (33%) 6/18-6/60; 266 (12%) vs 64 (6%) counting fingers or worse, P<0.05. Medical history for group B vs C: cognitive impairment: 55 (2.6%) vs 29 (5.2%), P<0.05; cardiovascular accident: 158 (7.4%) vs 60 (10.7%), P<0.05; diabetes: 372 (17.4%) vs 96 (17.1%), P=0.87; COPD/asthma: 382 (17.9%) vs 93 (16.6%), P=0.53; heart disease: 535 (25.1%) vs 155 (27.6%), P=0.35; hypertension: 971 (45.5%) vs 263 (46.9%), P=0.73. Ocular history for group B vs C was significant (P<0.05) for age-related macular degeneration 255 (12.0%) vs 93 (16.6%), other macular pathology 38 (1.8%) vs 25 (4.5%), corneal pathology 92 (4.3%) vs 36 (6.4%), amblyopia 37 (1.7%) vs 22 (3.9%). Detailed data on presenting complaint, ophthalmic history, and social status is discussed. CONCLUSION: We observed that surgery at a younger age with good levels of visual acuity was a factor in deferring cataract surgery. Cognitive impairment, cardiovascular accident, amblyopia, corneal and macular pathology significantly affected decision not to operate. We estimate that 80% of patients would be suitable for ophthalmic training.

6.
J Mol Neurosci ; 56(2): 472-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25720339

RESUMO

Pharmacological activation of the M1 muscarinic receptor subtype was suggested to promote the survival of retinal neurons. We examined the hypothesis that the M1 receptor is crucial for retinal neuron survival in vivo by using mice devoid of the M1 receptor gene. Muscarinic receptor gene expression was determined in the retina using real-time PCR. The amount of neurons in the retinal ganglion cell layer and of axons in the optic nerve was determined in retinal wholemounts stained with cresyl blue and in optic nerve cross-sections stained with toluidine blue, respectively. mRNA of all five muscarinic receptor subtypes (M1-M5) was detected in the retina from wild-type mice. Remarkably, M2 and M3 receptor mRNA were most abundant. In retinas from M1 receptor-deficient mice, M4 receptor mRNA expression was increased compared to that of wild-type mice, while no marked changes in the mRNA expression levels of the other muscarinic receptor subtypes were observed. The amount of cells in the retinal ganglion cell layer and the amount of axons in the optic nerve did not differ between M1 receptor-deficient and wild-type mice. The present findings suggest that the M1 receptor is not essential for the survival of retinal neurons in vivo.


Assuntos
Receptor Muscarínico M1/genética , Células Ganglionares da Retina/citologia , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Muscarínico M1/metabolismo , Células Ganglionares da Retina/metabolismo
7.
Invest Ophthalmol Vis Sci ; 52(10): 7479-84, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21873683

RESUMO

PURPOSE: To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. METHODS: Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor-deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. RESULTS: Only mRNA for the M(3) receptor was detected in retinal arterioles. Thus, M(3) receptor-deficient mice (M3R(-/-)) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R(-/-) mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R(-/-), mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non-subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. CONCLUSIONS: These findings provide evidence that endothelial M(3) receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase.


Assuntos
Acetilcolina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Receptor Muscarínico M3/fisiologia , Artéria Retiniana/fisiologia , Vasodilatação/fisiologia , Animais , Arteríolas/fisiologia , Carbacol/farmacologia , Relação Dose-Resposta a Droga , Endotélio Vascular/fisiologia , Feminino , Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidores , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA