Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 162(4): 795-807, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26255772

RESUMO

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis.


Assuntos
Síndrome de Angelman/genética , Transtorno Autístico/genética , Mutação de Sentido Incorreto , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/metabolismo , Animais , Transtorno Autístico/metabolismo , Encéfalo/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/patologia , Embrião de Mamíferos/metabolismo , Estabilidade Enzimática , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mutagênese , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo
2.
Cereb Cortex ; 31(6): 3064-3081, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33570093

RESUMO

Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Inibição Psicológica , MAP Quinase Quinase 1/metabolismo , Parvalbuminas/metabolismo , Animais , Córtex Cerebral/química , Eletroencefalografia/métodos , Desenvolvimento Embrionário/fisiologia , Neurônios GABAérgicos/química , Locomoção/fisiologia , MAP Quinase Quinase 1/análise , Camundongos , Técnicas de Cultura de Órgãos , Parvalbuminas/análise , Transdução de Sinais/fisiologia
3.
PLoS Genet ; 15(4): e1008108, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31017896

RESUMO

RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function.


Assuntos
Córtex Cerebral/metabolismo , Aprendizagem , Mutação , Neuroglia/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/psicologia , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Biomarcadores , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Síndrome de Noonan/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo
4.
J Neurosci ; 37(34): 8102-8115, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28733355

RESUMO

The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs.SIGNIFICANCE STATEMENT Alterations in ERK/MAPK activity are associated with drug abuse, as well as neuropsychiatric and movement disorders. However, genetic evidence defining the functions of ERK/MAPK signaling in striatum-related neurophysiology and behavior is lacking. We show that loss of ERK/MAPK signaling leads to pathway-specific alterations in motor function, reduced neuronal excitability, and the inability of medium spiny neurons to regulate activity-induced gene expression. Our results underscore the potential importance of the ERK/MAPK pathway in human movement disorders.


Assuntos
Corpo Estriado/fisiologia , Locomoção/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Movimento/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória
5.
Development ; 137(23): 4101-10, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062867

RESUMO

Polarized radial glia are crucial to the formation of the cerebral cortex. They serve as neural progenitors and as guides for neuronal placement in the developing cerebral cortex. The maintenance of polarized morphology is essential for radial glial functions, but the extent to which the polarized radial glial scaffold is static or dynamic during corticogenesis remains an open question. The developmental dynamics of radial glial morphology, inter-radial glial interactions during corticogenesis, and the role of the cell polarity complexes in these activities remain undefined. Here, using real-time imaging of cohorts of mouse radial glia cells, we show that the radial glial scaffold, upon which the cortex is constructed, is highly dynamic. Radial glial cells within the scaffold constantly interact with one another. These interactions are mediated by growth cone-like endfeet and filopodia-like protrusions. Polarized expression of the cell polarity regulator Cdc42 in radial glia regulates glial endfeet activities and inter-radial glial interactions. Furthermore, appropriate regulation of Gsk3 activity is required to maintain the overall polarity of the radial glia scaffold. These findings reveal dynamism and interactions among radial glia that appear to be crucial contributors to the formation of the cerebral cortex. Related cell polarity determinants (Cdc42, Gsk3) differentially influence radial glial activities within the evolving radial glia scaffold to coordinate the formation of cerebral cortex.


Assuntos
Comunicação Celular , Polaridade Celular , Córtex Cerebral/embriologia , Quinase 3 da Glicogênio Sintase/metabolismo , Neuroglia/citologia , Neuroglia/enzimologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Bioensaio , Forma Celular , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Glicogênio Sintase Quinase 3 beta , Cones de Crescimento/metabolismo , Integrases/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Nestina , Pseudópodes/enzimologia
6.
Proc Natl Acad Sci U S A ; 105(44): 17115-20, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18952847

RESUMO

Disrupted ERK1/2 (MAPK3/MAPK1) MAPK signaling has been associated with several developmental syndromes in humans; however, mutations in ERK1 or ERK2 have not been described. We demonstrate haplo-insufficient ERK2 expression in patients with a novel approximately 1 Mb micro-deletion in distal 22q11.2, a region that includes ERK2. These patients exhibit conotruncal and craniofacial anomalies that arise from perturbation of neural crest development and exhibit defects comparable to the DiGeorge syndrome spectrum. Remarkably, these defects are replicated in mice by conditional inactivation of ERK2 in the developing neural crest. Inactivation of upstream elements of the ERK cascade (B-Raf and C-Raf, MEK1 and MEK2) or a downstream effector, the transcription factor serum response factor resulted in analogous developmental defects. Our findings demonstrate that mammalian neural crest development is critically dependent on a RAF/MEK/ERK/serum response factor signaling pathway and suggest that the craniofacial and cardiac outflow tract defects observed in patients with a distal 22q11.2 micro-deletion are explained by deficiencies in neural crest autonomous ERK2 signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Crista Neural/embriologia , Animais , Cromossomos Humanos Par 22/genética , Embrião de Mamíferos/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Crista Neural/enzimologia , Fenótipo , Timo/metabolismo , Glândula Tireoide/metabolismo
7.
Nat Neurosci ; 10(5): 598-607, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17396120

RESUMO

To define the role of the Raf serine/threonine kinases in nervous system development, we conditionally targeted B-Raf and C-Raf, two of the three known mammalian Raf homologs, using a mouse line expressing Cre recombinase driven by a nestin promoter. Targeting of B-Raf, but not C-Raf, markedly attenuated baseline phosphorylation of Erk in neural tissues and led to growth retardation. Conditional elimination of B-Raf in dorsal root ganglion (DRG) neurons did not interfere with survival, but instead caused marked reduction in expression of the glial cell line-derived neurotrophic factor receptor Ret at postnatal stages, associated with a profound reduction in levels of transcription factor CBF-beta. Elimination of both alleles of Braf, which encodes B-Raf, and one allele of Raf1, which encodes C-Raf, affected DRG neuron maturation as well as proprioceptive axon projection toward the ventral horn in the spinal cord. Finally, conditional elimination of all Braf and Raf1 alleles strongly reduced neurotrophin-dependent axon growth in vitro as well as cutaneous axon terminal arborization in vivo. We conclude that Raf function is crucial for several aspects of DRG neuron development, including differentiation and axon growth.


Assuntos
Axônios/fisiologia , Diferenciação Celular/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Transdução de Sinais/fisiologia , Quinases raf/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Embrião de Mamíferos , Éxons , Gânglios Espinais/citologia , Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/fisiologia , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Ratos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Transfecção , Quinases raf/genética
8.
Cell Rep ; 37(2): 109802, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644582

RESUMO

Tissue-clearing methods allow every cell in the mouse brain to be imaged without physical sectioning. However, the computational tools currently available for cell quantification in cleared tissue images have been limited to counting sparse cell populations in stereotypical mice. Here, we introduce NuMorph, a group of analysis tools to quantify all nuclei and nuclear markers within the mouse cortex after clearing and imaging by light-sheet microscopy. We apply NuMorph to investigate two distinct mouse models: a Topoisomerase 1 (Top1) model with severe neurodegenerative deficits and a Neurofibromin 1 (Nf1) model with a more subtle brain overgrowth phenotype. In each case, we identify differential effects of gene deletion on individual cell-type counts and distribution across cortical regions that manifest as alterations of gross brain morphology. These results underline the value of whole-brain imaging approaches, and the tools are widely applicable for studying brain structure phenotypes at cellular resolution.


Assuntos
Núcleo Celular/patologia , Córtex Cerebral/patologia , Técnicas de Preparação Histocitológica , Degeneração Neural , Neuroglia/patologia , Neuroimagem , Neurônios/patologia , Animais , Núcleo Celular/metabolismo , Córtex Cerebral/metabolismo , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Deleção de Genes , Genes da Neurofibromatose 1 , Processamento de Imagem Assistida por Computador , Camundongos Knockout , Neuroglia/metabolismo , Neurônios/metabolismo , Fenótipo , Máquina de Vetores de Suporte
9.
Neuron ; 49(3): 325-7, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16446135

RESUMO

Somatosensory stimuli are encoded by molecularly and anatomically diverse classes of dorsal root ganglia (DRG) neurons. In this issue of Neuron, three papers demonstrate that the Runx transcription factors, Runx1 and Runx3, respectively regulate the molecular identities and spinal terminations of TrkA+ nociceptive neurons and TrkC+ proprioceptive neurons. These findings emphasize the importance of intrinsic genetic programs in generating the diversity of DRG neurons and specifying the circuits into which they incorporate.


Assuntos
Diferenciação Celular/fisiologia , Subunidades alfa de Fatores de Ligação ao Core/fisiologia , Neurônios Aferentes/fisiologia , Animais , Neurônios Aferentes/classificação , Receptor trkA/metabolismo
10.
Neuron ; 52(6): 981-96, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17178402

RESUMO

Glycogen synthase kinase-3beta (GSK-3beta) is thought to mediate morphological responses to a variety of extracellular signals. Surprisingly, we found no gross morphological deficits in nervous system development in GSK-3beta null mice. We therefore designed an shRNA that targeted both GSK-3 isoforms. Strong knockdown of both GSK-3alpha and beta markedly reduced axon growth in dissociated cultures and slice preparations. We then assessed the role of different GSK-3 substrates in regulating axon morphology. Elimination of activity toward primed substrates only using the GSK-3 R96A mutant was associated with a defect in axon polarity (axon branching) compared to an overall reduction in axon growth induced by a kinase-dead mutant. Consistent with this finding, moderate reduction of GSK-3 activity by pharmacological inhibitors induced axon branching and was associated primarily with effects on primed substrates. Our results suggest that GSK-3 is a downstream convergent point for many axon growth regulatory pathways and that differential regulation of primed versus all GSK-3 substrates is associated with a specific morphological outcome.


Assuntos
Axônios/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/fisiologia , Hipocampo/citologia , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Animais , Axônios/fisiologia , Western Blotting , Contagem de Células/métodos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Imunofluorescência/métodos , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Técnicas In Vitro , Indóis/farmacologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/fisiologia , Modelos Biológicos , Mutação/fisiologia , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oximas/farmacologia , Transfecção/métodos
11.
J Neurochem ; 115(4): 974-83, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20831597

RESUMO

Mammalian glycogen synthase kinase-3 (GSK3) is generated from two genes, GSK3α and GSK3ß, while a splice variant of GSK3ß (GSK3ß2), containing a 13 amino acid insert, is enriched in neurons. GSK3α and GSK3ß deletions generate distinct phenotypes. Here, we show that phosphorylation of CRMP2, CRMP4, ß-catenin, c-Myc, c-Jun and some residues on tau associated with Alzheimer's disease, is altered in cortical tissue lacking both isoforms of GSK3. This confirms that they are physiological targets for GSK3. However, deletion of each GSK3 isoform produces distinct substrate phosphorylation, indicating that each has a different spectrum of substrates (e.g. phosphorylation of Thr509, Thr514 and Ser518 of CRMP is not detectable in cortex lacking GSK3ß, yet normal in cortex lacking GSK3α). Furthermore, the neuron-enriched GSK3ß2 variant phosphorylates phospho-glycogen synthase 2 peptide, CRMP2 (Thr509/514), CRMP4 (Thr509), Inhibitor-2 (Thr72) and tau (Ser396), at a lower rate than GSK3ß1. In contrast phosphorylation of c-Myc and c-Jun is equivalent for each GSK3ß isoform, providing evidence that differential substrate phosphorylation is achieved through alterations in expression and splicing of the GSK3 gene. Finally, each GSK3ß splice variant is phosphorylated to a similar extent at the regulatory sites, Ser9 and Tyr216, and exhibit identical sensitivities to the ATP competitive inhibitor CT99021, suggesting upstream regulation and ATP binding properties of GSK3ß1 and GSK3ß2 are similar.


Assuntos
Encéfalo/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Fosforilação/genética , Especificidade por Substrato/genética
12.
Neuron ; 35(1): 65-76, 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12123609

RESUMO

Nerve growth factor (NGF) induces dramatic axon growth from responsive embryonic peripheral neurons. However, the roles of the various NGF-triggered signaling cascades in determining specific axon morphological features remain unknown. Here, we transfected activated and inhibitory mutants of Trk effectors into sensory neurons lacking the proapoptotic protein Bax. This allowed axon growth to be studied in the absence of NGF, enabling us to observe the contributions of individual signaling mediators. While Ras was both necessary and sufficient for NGF-stimulated axon growth, the Ras effectors Raf and Akt induced distinct morphologies. Activated Raf-1 caused axon lengthening comparable to NGF, while active Akt increased axon caliber and branching. Our results suggest that the different Trk effector pathways mediate distinct morphological aspects of developing neurons.


Assuntos
Gânglios Espinais/embriologia , Gânglios Espinais/metabolismo , Cones de Crescimento/metabolismo , Neurônios Aferentes/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-raf/deficiência , Proteínas Proto-Oncogênicas/deficiência , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Tamanho Celular/genética , Feminino , Feto , Gânglios Espinais/citologia , Expressão Gênica/fisiologia , Cones de Crescimento/ultraestrutura , MAP Quinase Quinase 1 , Masculino , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Crescimento Neural/metabolismo , Neurônios Aferentes/citologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-raf/genética , Receptores Proteína Tirosina Quinases/genética , Receptor trkA/genética , Receptor trkA/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Transdução de Sinais/genética , Proteína X Associada a bcl-2 , Proteínas ras/genética , Proteínas ras/metabolismo
13.
Neuron ; 43(1): 1-2, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15233911

RESUMO

Upregulation of the transcription factor c-Jun has been correlated with axon regeneration after injury in multiple types of neurons. In this issue of Neuron, Raivich et al. use a nervous system-specific mutant to provide genetic evidence that c-Jun is necessary for efficient axon regeneration.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/genética , Sistema Nervoso/crescimento & desenvolvimento , Plasticidade Neuronal/genética , Proteínas Proto-Oncogênicas c-jun/genética , Animais , Traumatismos do Nervo Facial/genética , Traumatismos do Nervo Facial/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Knockout/genética , Camundongos Knockout/crescimento & desenvolvimento , Camundongos Knockout/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Ativação Transcricional/genética
14.
Neuron ; 35(1): 13-6, 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12123603

RESUMO

Robust axon regeneration occurs after peripheral nerve injury through coordinated activation of a genetic program and local intracellular signaling cascades. Although regeneration-associated genes are being identified with increasing frequency, most aspects of regeneration-associated intracellular signaling remain poorly understood. Two independent studies now report that upregulation of cAMP is a component of the PNS regeneration program that can be exploited to enhance axon regeneration through the normally inhibitory CNS environment.


Assuntos
Cones de Crescimento/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos , Transdução de Sinais/fisiologia , Animais , AMP Cíclico/metabolismo , Citocinas/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/lesões , Gânglios Espinais/metabolismo , Cones de Crescimento/ultraestrutura , Substâncias de Crescimento/metabolismo , Humanos , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiopatologia
15.
Neuron ; 42(6): 897-912, 2004 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15207235

RESUMO

Little is known about how nerve growth factor (NGF) signaling controls the regulated assembly of microtubules that underlies axon growth. Here we demonstrate that a tightly regulated and localized activation of phosphatidylinositol 3-kinase (PI3K) at the growth cone is essential for rapid axon growth induced by NGF. This spatially activated PI3K signaling is conveyed downstream through a localized inactivation of glycogen synthase kinase 3beta (GSK-3beta). These two spatially coupled kinases control axon growth via regulation of a microtubule plus end binding protein, adenomatous polyposis coli (APC). Our results demonstrate that NGF signals are transduced to the axon cytoskeleton via activation of a conserved cell polarity signaling pathway.


Assuntos
Polipose Adenomatosa do Colo/metabolismo , Axônios/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Microtúbulos/metabolismo , Fatores de Crescimento Neural/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Antineoplásicos/farmacologia , Axônios/efeitos dos fármacos , Western Blotting/métodos , Contagem de Células , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Imunofluorescência/métodos , Gânglios Espinais/citologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Glicogênio Sintase Quinase 3 beta , Proteínas de Fluorescência Verde , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/fisiologia , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Neurológicos , Mutagênese Sítio-Dirigida/fisiologia , Fatores de Crescimento Neural/imunologia , Fatores de Crescimento Neural/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/genética , Transativadores/metabolismo , Transfecção/métodos , Tubulina (Proteína)/metabolismo , beta Catenina
16.
Neuron ; 38(3): 403-16, 2003 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-12741988

RESUMO

To study the role of NT3 in directing axonal projections of proprioceptive dorsal root ganglion (DRG) neurons, NT3(-/-) mice were crossed with mice carrying a targeted deletion of the proapoptotic gene Bax. In Bax(-/-)/NT3(-/-) mice, NT3-dependent neurons survived and expressed the proprioceptive neuronal marker parvalbumin. Initial extension and collateralization of proprioceptive axons into the spinal cord occurred normally, but proprioceptive axons extended only as far as the intermediate spinal cord. This projection defect is similar to the defect in mice lacking the ETS transcription factor ER81. Few if any DRG neurons from Bax(-/-)/NT3(-/-) mice expressed ER81 protein. Expression of a NT3 transgene in muscle restored DRG ER81 expression in NT3(-/-) mice. Finally, addition of NT3 to DRG explant cultures resulted in induction of ER81 protein. Our data indicate that NT3 mediates the formation of proprioceptive afferent-motor neuron connections via regulation of ER81.


Assuntos
Vias Aferentes/embriologia , Proteínas de Ligação a DNA/deficiência , Gânglios Espinais/embriologia , Neurônios Aferentes/metabolismo , Neurotrofina 3/deficiência , Propriocepção/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2 , Fatores de Transcrição/deficiência , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/metabolismo , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Feminino , Feto , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Fusos Musculares/embriologia , Fusos Musculares/crescimento & desenvolvimento , Fusos Musculares/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Neurônios Aferentes/citologia , Neurotrofina 3/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Medula Espinal/embriologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Fatores de Transcrição/genética , Proteína X Associada a bcl-2
17.
Cell Rep ; 18(13): 3167-3177, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355568

RESUMO

During development of the vertebrate CNS, the basic helix-loop-helix (bHLH) transcription factor Olig2 sustains replication competence of progenitor cells that give rise to neurons and oligodendrocytes. A pathological counterpart of this developmental function is seen in human glioma, wherein Olig2 is required for maintenance of stem-like cells that drive tumor growth. The mitogenic/gliomagenic functions of Olig2 are regulated by phosphorylation of a triple serine motif (S10, S13, and S14) in the amino terminus. Here, we identify a set of three serine/threonine protein kinases (glycogen synthase kinase 3α/ß [GSK3α/ß], casein kinase 2 [CK2], and cyclin-dependent kinases 1/2 [CDK1/2]) that are, collectively, both necessary and sufficient to phosphorylate the triple serine motif. We show that phosphorylation of the motif itself serves as a template to prime phosphorylation of additional serines and creates a highly charged "acid blob" in the amino terminus of Olig2. Finally, we show that small molecule inhibitors of this forward-feeding phosphorylation cascade have potential as glioma therapeutics.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Glioma/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Animais , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Glioma/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
18.
Curr Opin Neurobiol ; 12(5): 523-31, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12367631

RESUMO

Neuronal morphological differentiation is regulated by numerous polypeptide growth factors (neurotrophic factors). Recently, significant progress has been achieved in clarifying the roles of neurotrophins as well as glial cell line-derived neurotrophic factor family members in peripheral axon elongation during development. Additionally, advances have been made in defining the signal transduction mechanisms employed by these factors in mediating axon morphological responses. Several studies addressed the role of neurotrophic factors in regenerative axon growth and suggest that signaling mechanisms in addition to those triggered by receptor tyrosine kinases may be required for successful peripheral nervous system regeneration. Finally, recent investigations demonstrate that neurotrophic factors can enhance axon growth after spinal cord injuries.


Assuntos
Axônios/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/citologia , Animais , Axônios/ultraestrutura , Divisão Celular/genética , Divisão Celular/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
19.
Elife ; 5: e11903, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26974342

RESUMO

Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3ß plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3ß promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3ß reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3ß in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3ß and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3ß-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Traumatismos do Nervo Óptico/patologia , Regeneração , Células Ganglionares da Retina/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Axônios/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL
20.
Cell Rep ; 17(1): 165-178, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681429

RESUMO

In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of ß-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3ß stabilizes ß-catenin and activates MG proliferation. Downstream of Wnt, ß-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes ß-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina.


Assuntos
Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas Wnt/genética , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células , Células Ependimogliais/citologia , Glicogênio Sintase Quinase 3 beta/deficiência , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA