Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674644

RESUMO

Conventional bone cancer treatment often results in unwanted side effects, critical-sized bone defects, and inefficient cancer-cell targeting. Therefore, new approaches are necessary to better address bone cancer treatment and patient's recovery. One solution may reside in the combination of bone regeneration scaffolds with magnetic hyperthermia. By incorporating pristine superparamagnetic iron oxide nanoparticles (pSPIONs) into additively manufactured scaffolds we created magnetic structures for magnetic hyperthermia and bone regeneration. For this, hydroxyapatite (HA) particles were integrated in a polymeric matrix composed of chitosan (CS) and poly (vinyl alcohol) (PVA). Once optimized, pSPIONs were added to the CS/PVA/HA paste at three different concentrations (1.92, 3.77, and 5.54 wt.%), and subsequently additively manufactured to form a scaffold. Results indicate that scaffolds containing 3.77 and 5.54 wt.% of pSPIONs, attained temperature increases of 6.6 and 7.5 °C in magnetic hyperthermia testing, respectively. In vitro studies using human osteosarcoma Saos-2 cells indicated that pSPIONs incorporation significantly stimulated cell adhesion, proliferation and alkaline phosphatase (ALP) expression when compared to CS/PVA/HA scaffolds. Thus, these results support that CS/PVA/HA/pSPIONs scaffolds with pSPIONs concentrations above or equal to 3.77 wt.% have the potential to be used for magnetic hyperthermia and bone regeneration.


Assuntos
Quitosana , Hipertermia Induzida , Humanos , Quitosana/química , Durapatita/química , Alicerces Teciduais/química , Regeneração Óssea , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Engenharia Tecidual/métodos
2.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067467

RESUMO

Cancer is one of the leading causes of death worldwide. Conventional treatments such as surgery, chemotherapy, and radiotherapy have limitations and severe side effects. Magnetic hyperthermia (MH) is an alternative method that can be used alone or in conjunction with chemotherapy or radiotherapy to treat cancer. Cobalt ferrite particles were synthesized using an innovative biogenic sol-gel method with powder of coconut water (PCW). The obtained powders were subjected to heat treatments between 500 °C and 1100 °C. Subsequently, they were characterized by thermal, structural, magnetic, and cytotoxic analyses to assess their suitability for MH applications. Through X-ray diffraction and Raman spectroscopy, it was possible to confirm the presence of the pure phase of CoFe2O4 in the sample treated at 1100 °C, exhibiting a saturation magnetization of 84 emu/g at 300 K and an average grain size of 542 nm. Furthermore, the sample treated at 1100 °C showed a specific absorption rate (SAR) of 3.91 W/g, and at concentrations equal to or below 5 mg/mL, is non-cytotoxic, being the most suitable for biomedical applications.


Assuntos
Magnetismo , Neoplasias , Humanos , Cobalto/química , Compostos Férricos/química
3.
Nanotechnology ; 26(42): 425704, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26421876

RESUMO

Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.


Assuntos
Coloides/química , Nanopartículas de Magnetita/química , Tensoativos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Coloides/toxicidade , Temperatura Alta , Nanopartículas de Magnetita/toxicidade , Células Vero
4.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930318

RESUMO

Cancer is a major worldwide public health problem. Although there have already been astonishing advances in cancer diagnosis and treatment, the scientific community continues to make huge efforts to develop new methods to treat cancer. The main objective of this work is to prepare, using a green sol-gel method with coconut water powder (CWP), a new nanocomposite with a mixture of Gd3Fe5O12 and ZnFe2O4, which has never been synthesized previously. Therefore, we carried out a structural (DTA-TG and X-ray diffraction), morphological (SEM), and magnetic (VSM and hyperthermia) characterization of the prepared samples. The prepared nanocomposite denoted a saturation magnetization of 11.56 emu/g at room temperature with a ferromagnetic behavior and with a specific absorption rate (SAR) value of 0.5 ± 0.2 (W/g). Regarding cytotoxicity, for concentrations < 10 mg/mL, it does not appear to be toxic. Although the obtained results were interesting, the high particle size was identified as a problem for the use of this nanocomposite.

5.
Life Sci ; 344: 122558, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471621

RESUMO

AIMS: Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. MATERIALS AND METHODS: Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. KEY FINDINGS: The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. SIGNIFICANCE: Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.


Assuntos
Antineoplásicos , Compostos Férricos , Nanopartículas , Animais , Camundongos , Fluoruracila , Lipossomos , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Fenômenos Magnéticos , Lipídeos , Portadores de Fármacos/química , Linhagem Celular Tumoral
6.
Int J Biol Macromol ; 271(Pt 1): 131981, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811317

RESUMO

The development of new Drug Delivery Systems (DDS) by incorporating microparticles within hydrogels can prolong the release rate of drugs and/or other bioactive agents. In this study, we combined gellan gum/alginate microparticles within a thermoresponsive chitosan (Ch) hydrogel with ß-Glycerophosphate (ß-GP), designing the system to be in the sol state at 21 °C and in the gel state at 37 °C to enable the injectability of the system. The system was in the sol state between 10 °C and 21 °C. Higher concentrations of ß-GP (0, 2, 3, 4, 5 w/v%) and microparticles (0, 2 and 5 w/v%) allowed a faster sol-gel transition with higher mechanical strength at 37 °C. However, the sol-gel transition was not instantaneous. The release profile of methylene blue (MB) from the microparticles was significantly affected by their incorporation in Ch/ß-GP hydrogels, only allowing the release of 60-70 % of MB for 6 days, while the microparticles alone released all the MB in 48 h. The proposed system did not present cytotoxicity to VERO cell lines as a preliminary assay, with the Ch/ß-GP/GG:Alg having >90 % of cellular viability. The proposed Ch/ß-GP system proved to have a delaying effect on drug release and biocompatible properties, being a promising future DDS.


Assuntos
Alginatos , Quitosana , Glicerofosfatos , Polissacarídeos Bacterianos , Quitosana/química , Alginatos/química , Polissacarídeos Bacterianos/química , Glicerofosfatos/química , Animais , Chlorocebus aethiops , Hidrogéis/química , Células Vero , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Temperatura , Microesferas , Injeções , Sobrevivência Celular/efeitos dos fármacos
7.
Biomimetics (Basel) ; 8(2)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37218792

RESUMO

Composite biomaterials that combine osteoconductive and osteoinductive properties are a promising approach for bone tissue engineering (BTE) since they stimulate osteogenesis while mimicking extracellular matrix (ECM) morphology. In this context, the aim of the present research was to produce polyvinylpyrrolidone (PVP) nanofibers containing mesoporous bioactive glass (MBG) 80S15 nanoparticles. These composite materials were produced by the electrospinning technique. Design of experiments (DOE) was used to estimate the optimal electrospinning parameters to reduce average fiber diameter. The polymeric matrices were thermally crosslinked under different conditions, and the fibers' morphology was studied using scanning electron microscopy (SEM). Evaluation of the mechanical properties of nanofibrous mats revealed a dependence on thermal crosslinking parameters and on the presence of MBG 80S15 particles inside the polymeric fibers. Degradation tests indicated that the presence of MBG led to a faster degradation of nanofibrous mats and to a higher swelling capacity. The assessment of in vitro bioactivity in simulated body fluid (SBF) was performed using MBG pellets and PVP/MBG (1:1) composites to assess if the bioactive properties of MBG 80S15 were kept when it was incorporated into PVP nanofibers. FTIR and XRD analysis along with SEM-EDS results indicated that a hydroxy-carbonate apatite (HCA) layer formed on the surface of MBG pellets and nanofibrous webs after soaking in SBF over different time periods. In general, the materials revealed no cytotoxic effects on the Saos-2 cell line. The overall results for the materials produced show the potential of the composites to be used in BTE.

8.
Biomater Adv ; 145: 213275, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608438

RESUMO

The development of new cancer treatment options, such as multifunctional devices, allows for a more personalized treatment, avoiding the known severe side effects of conventional options. In this context, on-demand drug delivery systems can actively control the rate of drug release offering a precise control of treatment. Magnetically and thermally controlled drug delivery systems have been explored as on-demand devices to treat chronic diseases and cancer tumors. In the present work, dual-stimuli responsive systems were developed by incorporating Fe3O4 magnetic nanoparticles (NPs) and poly(N-isopropylacrylamide) (PNIPAAm) microgels into electrospun polymeric fibers for application in cancer treatment. First, Fe3O4 NPs with an average diameter of 8 nm were synthesized by chemical precipitation technique and stabilized with dimercaptosuccinic acid (DMSA) or oleic acid (OA). PNIPAAm microgels were synthesized by surfactant-free emulsion polymerization (SFEP). Poly(vinyl alcohol) (PVA) was used as a fiber template originating fibers with an average diameter of 179 ± 14 nm. Stress tests of the membranes showed that incorporating both microgels and Fe3O4 NPs in electrospun fibers increases their Young's modulus. Swelling assays indicate that PVA membranes have a swelling ratio of around 3.4 (g/g) and that the presence of microgels does not affect its swelling ability. However, with the incorporation of Fe3O4 NPs, the swelling ratio of the membranes decreases. Magnetic hyperthermia assays show that a higher concentration of NPs leads to a higher heating ability. The composite membrane with the most promising results is the one incorporated with DMSA-coated NPs, since it shows the highest temperature variation, 5.1 °C. To assess the membranes biocompatibility and ability to promote cell proliferation, indirect and direct contact cell viability assays were performed, as well as cell adhesion assays. Following an extract method viability assay, all membrane designs did not reveal cytotoxic effects on dermal fibroblasts and melanoma cancer cells, after 48 h exposure and support long-term viability. The present work demonstrates the potential of dual-stimuli composite membranes for magnetic hyperthermia and may in the future be used as an alternative cancer treatment particularly in anatomically reachable solid tumors.


Assuntos
Hipertermia Induzida , Microgéis , Nanofibras , Neoplasias , Álcool de Polivinil , Fenômenos Magnéticos
9.
Pharmaceutics ; 15(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765284

RESUMO

Among central nervous system (CNS) disorders, Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and a major cause of dementia worldwide. The yet unclear etiology of AD and the high impenetrability of the blood-brain barrier (BBB) limit most therapeutic compounds from reaching the brain. Although many efforts have been made to effectively deliver drugs to the CNS, both invasive and noninvasive strategies employed often come with associated side effects. Nanotechnology-based approaches such as nanoparticles (NPs), which can act as multifunctional platforms in a single system, emerged as a potential solution for current AD theranostics. Among these, magnetic nanoparticles (MNPs) are an appealing strategy since they can act as contrast agents for magnetic resonance imaging (MRI) and as drug delivery systems. The nanocarrier functionalization with specific moieties, such as peptides, proteins, and antibodies, influences the particles' interaction with brain endothelial cell constituents, facilitating transport across the BBB and possibly increasing brain penetration. In this review, we introduce MNP-based systems, combining surface modifications with the particles' physical properties for molecular imaging, as a novel neuro-targeted strategy for AD theranostics. The main goal is to highlight the potential of multifunctional MNPs and their advances as a dual nanotechnological diagnosis and treatment platform for neurodegenerative disorders.

10.
Materials (Basel) ; 16(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241507

RESUMO

Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO2 particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C. The samples obtained underwent structural, morphological, biocompatibility, and magnetic characterization. The results show that upon raising the heat treatment temperature, not only is the wanted phase detected, but also the secondary phases. To overcome these secondary phases, several different heat treatments were carried out. Using scanning electron microscopy, grains in the micrometric range were observed. Saturation magnetizations between 15.5 and 24.1 emu/g were observed for the samples containing KFeO2 with an applied field of 50 kOe at 300 K. From cellular compatibility (cytotoxicity) assays, for concentrations up to 5 mg/mL, only the samples treated at 350 °C were cytotoxic. However, the samples containing KFeO2, while being biocompatible, had low specific absorption rates (1.55-5.76 W/g).

11.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234440

RESUMO

In recent decades, new and improved materials have been developed with a significant interest in three-dimensional (3D) scaffolds that can cope with the diverse needs of the expanding biomedical field and promote the required biological response in multiple applications. Due to their biocompatibility, ability to encapsulate and deliver drugs, and capacity to mimic the extracellular matrix (ECM), typical hydrogels have been extensively investigated in the biomedical and biotechnological fields. The major limitations of hydrogels include poor mechanical integrity and limited cell interaction, restricting their broad applicability. To overcome these limitations, an emerging approach, aimed at the generation of hybrid materials with synergistic effects, is focused on incorporating nanoparticles (NPs) within polymeric gels to achieve nanocomposites with tailored functionality and improved properties. This review focuses on the unique contributions of clay nanoparticles, regarding the recent developments of clay-based nanocomposite hydrogels, with an emphasis on biomedical applications.

12.
Gels ; 7(1)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807693

RESUMO

The delivery of multiple anti-cancer agents holds great promise for better treatments. The present work focuses on developing multifunctional materials for simultaneous and local combinatory treatment: Chemotherapy and hyperthermia. We first produced hybrid microgels (MG), synthesized by surfactant-free emulsion polymerization, consisting of Poly (N-isopropyl acrylamide) (PNIPAAm), chitosan (40 wt.%), and iron oxide nanoparticles (NPs) (5 wt.%) as the inorganic component. PNIPAAm MGs with a hydrodynamic diameter of about 1 µm (in their swollen state) were successfully synthesized. With the incorporation of chitosan and NPs in PNIPAAm MG, a decrease in MG diameter and swelling capacity was observed, without affecting their thermosensitivity. We then sought to produce biocompatible and mechanically robust membranes containing these dual-responsive MG. To achieve this, MG were incorporated in poly (vinyl pyrrolidone) (PVP) fibers through colloidal electrospinning. The presence of NPs in MG decreases the membrane swelling ratio from 10 to values between 6 and 7, and increases the material stiffness, raising its Young modulus from 20 to 35 MPa. Furthermore, magnetic hyperthermia assay shows that PVP-MG-NP composites perform better than any other formulation, with a temperature variation of about 1 °C. The present work demonstrates the potential of using multifunctional colloidal membranes for magnetic hyperthermia and may in the future be used as an alternative treatment for cancer.

13.
Gels ; 7(3)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34563033

RESUMO

Engineering drug delivery systems (DDS) aim to release bioactive cargo to a specific site within the human body safely and efficiently. Hydrogels have been used as delivery matrices in different studies due to their biocompatibility, biodegradability, and versatility in biomedical purposes. Microparticles have also been used as drug delivery systems for similar reasons. The combination of microparticles and hydrogels in a composite system has been the topic of many research works. These composite systems can be injected in loco as DDS. The hydrogel will serve as a barrier to protect the particles and retard the release of any bioactive cargo within the particles. Additionally, these systems allow different release profiles, where different loads can be released sequentially, thus allowing a synergistic treatment. The reported advantages from several studies of these systems can be of great use in biomedicine for the development of more effective DDS. This review will focus on in situ injectable microparticles in hydrogel composite DDS for biomedical purposes, where a compilation of different studies will be analysed and reported herein.

14.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466651

RESUMO

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε' (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g-1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.

15.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374282

RESUMO

Several problems and limitations faced in the treatment of many diseases can be overcome by using controlled drug delivery systems (DDS), where the active compound is transported to the target site, minimizing undesirable side effects. In situ-forming hydrogels that can be injected as viscous liquids and jellify under physiological conditions and biocompatible clay nanoparticles have been used in DDS development. In this work, polymer-clay composites based on Pluronics (F127 and F68) and nanoclays were developed, aiming at a biocompatible and injectable system for long-term controlled delivery of methylene blue (MB) as a model drug. MB release from the systems produced was carried out at 37 °C in a pH 7.4 medium. The Pluronic formulation selected (F127/F68 18/2 wt.%) displayed a sol/gel transition at approx. 30 °C, needing a 2.5 N force to be injected at 25 °C. The addition of 2 wt.% of Na116 clay decreased the sol/gel transition to 28 °C and significantly enhanced its viscoelastic modulus. The most suitable DDS for long-term application was the Na116-MB hybrid from which, after 15 days, only 3% of the encapsulated MB was released. The system developed in this work proved to be injectable, with a long-term drug delivery profile up to 45 days.

16.
Gels ; 4(2)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30674830

RESUMO

One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli "smart" systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.

17.
Carbohydr Polym ; 198: 9-16, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30093046

RESUMO

In the present work composite membranes were produced by combining magnetic nanoparticles (NPs) with cellulose acetate (CA) membranes for magnetic hyperthermia applications. The non-woven CA membranes were produced by electrospinning technique, and magnetic NPs were incorporated by adsorption at fibers surface or by addition to the electrospinning solution. Therefore, different designs of composite membranes were obtained. Superparamagnetic NPs synthesized by chemical precipitation were stabilized either with oleic acid (OA) or dimercaptosuccinic acid (DMSA) to obtain stable suspensions at physiological pH. The incorporation of magnetic NP into CA matrix was confirmed by scanning and transmission electron microscopy. The results showed that adsorption of magnetic NPs at fibers' surface originates composite membranes with higher heating ability than those produced by incorporation of magnetic NPs inside the fibers. However, adsorption of magnetic NPs at fibers' surface can cause cytotoxicity depending on the NPs concentration. Tensile tests demonstrated a reinforcement effect caused by the incorporation of magnetic NPs in the non-woven membrane.

18.
Carbohydr Polym ; 149: 382-90, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27261762

RESUMO

Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan.


Assuntos
Quitosana/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Temperatura , Peso Molecular
19.
Carbohydr Polym ; 153: 212-221, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27561489

RESUMO

In the present work composite nanoparticles with a magnetic core and a chitosan-based shell were produced as drug delivery systems for doxorubicin (DOX). The results show that composite nanoparticles with a hydrodynamic diameter within the nanometric range are able to encapsulate more DOX than polymeric nanoparticles alone corresponding also to a higher drug release. Moreover the synthesis method of the iron oxide nanoparticles influences the total amount of DOX released and a high content of iron oxide nanoparticles inhibits DOX release. The modelling of the experimental results revealed a release mechanism dominated by Fickian diffusion.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Quitosana/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Compostos Férricos/química , Nanopartículas Metálicas/química , Antibióticos Antineoplásicos/química , Difusão , Doxorrubicina/química , Portadores de Fármacos/síntese química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Nanocompostos/química , Tamanho da Partícula , Nanomedicina Teranóstica
20.
Carbohydr Polym ; 147: 304-312, 2016 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27178936

RESUMO

In the present work, two drug delivery systems were produced by encapsulating doxorubicin into chitosan and O-HTCC (ammonium-quaternary derivative of chitosan) nanoparticles. The results show that doxorubicin release is independent of the molecular weight and is higher at acidic pH (4.5) than at physiological pH. NPs with an average hydrodynamic diameter bellow 200nm are able to encapsulate up to 70% and 50% of doxorubicin in the case of chitosan and O-HTCC nanoparticles, respectively. O-HTCC nanoparticles led to a higher amount of doxorubicin released than chitosan nanoparticles, for the same experimental conditions, although the release mechanism was not altered. A burst effect occurs within the first hours of release, reaching a plateau after 24h. Fitting mathematical models to the experimental data led to a concordant release mechanism between most samples, indicating an anomalous or mixed release, which is in agreement with the swelling behavior of chitosan described in the literature.


Assuntos
Quitosana/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA