RESUMO
BACKGROUND: Peanut smut is a disease caused by the fungus Thecaphora frezii Carranza & Lindquist to which most commercial cultivars in South America are highly susceptible. It is responsible for severely decreased yield and no effective chemical treatment is available to date. However, smut resistance has been identified in wild Arachis species and further transferred to peanut elite cultivars. To identify the genome regions conferring smut resistance within a tetraploid genetic background, this study evaluated a RIL population {susceptible Arachis hypogaea subsp. hypogaea (JS17304-7-B) × resistant synthetic amphidiploid (JS1806) [A. correntina (K 11905) × A. cardenasii (KSSc 36015)] × A. batizocoi (K 9484)4×} segregating for the trait. RESULTS: A SNP based genetic map arranged into 21 linkage groups belonging to the 20 peanut chromosomes was constructed with 1819 markers, spanning a genetic distance of 2531.81 cM. Two consistent quantitative trait loci (QTLs) were identified qSmIA08 and qSmIA02/B02, located on chromosome A08 and A02/B02, respectively. The QTL qSmIA08 at 15.20 cM/5.03 Mbp explained 17.53% of the phenotypic variance, while qSmIA02/B02 at 4.0 cM/3.56 Mbp explained 9.06% of the phenotypic variance. The combined genotypic effects of both QTLs reduced smut incidence by 57% and were stable over the 3 years of evaluation. The genome regions containing the QTLs are rich in genes encoding proteins involved in plant defense, providing new insights into the genetic architecture of peanut smut resistance. CONCLUSIONS: A major QTL and a minor QTL identified in this study provide new insights into the genetic architecture of peanut smut resistance that may aid in breeding new varieties resistant to peanut smut.
Assuntos
Arachis/genética , Arachis/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Estudos de Associação Genética , Marcadores Genéticos , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genéticaRESUMO
OBJECTIVES: The fungal pathogen Thecaphora frezii Carranza & Lindquist causes peanut smut, a severe disease currently endemic in Argentina. To study the ecology of T. frezii and to understand the mechanisms of smut resistance in peanut plants, it is crucial to know the genetics of this pathogen. The objective of this work was to isolate the pathogen and generate the first draft genome of T. frezii that will be the basis for analyzing its potential genetic diversity and its interaction with peanut cultivars. Our research group is working to identify peanut germplasm with smut resistance and to understand the genetics of the pathogen. Knowing the genome of T. frezii will help analyze potential variants of this pathogen and contribute to develop enhanced peanut germplasm with broader and long-lasting resistance. DATA DESCRIPTION: Thecaphora frezii isolate IPAVE 0401 (here referred as T.f.B7) was obtained from a single hyphal-tip culture, its DNA was sequenced using Pacific Biosciences Sequel II (PacBio) and Illumina NovaSeq6000 (Nova). Data from both sequencing platforms were combined and the de novo assembling estimated a 29.3 Mb genome size. Completeness of the genome examined using Benchmarking Universal Single-Copy Orthologs (BUSCO) showed the assembly had 84.6% of the 758 genes in fungi_odb10.
Assuntos
Basidiomycota , Fabaceae , Ustilaginales , Arachis/genética , Genoma , Fabaceae/genética , Ustilaginales/genéticaRESUMO
Peanut smut caused by Thecaphora frezii is a severe fungal disease currently endemic to Argentina and Brazil. The identification of smut resistant germplasm is crucial in view of the potential risk of a global spread. In a recent study, we reported new sources of smut resistance and demonstrated its introgression into elite peanut cultivars. Here, we revisited one of these sources (line I0322) to verify its presence in the U.S. peanut germplasm collection and to identify single nucleotide polymorphisms (SNPs) potentially associated with resistance. Five accessions of Arachis hypogaea subsp. fastigiata from the U.S. peanut collection, along with the resistant source and derived inbred lines were genotyped with a 48K SNP peanut array. A recently developed SNP genotyping platform called RNase H2 enzyme-based amplification (rhAmp) was further applied to validate selected SNPs in a larger number of individuals per accession. More than 14,000 SNPs and nine rhAmp assays confirmed the presence of a germplasm in the U.S. peanut collection that is 98.6% identical (P < 0.01, bootstrap t-test) to the resistant line I0322. We report this germplasm with accompanying genetic information, genotyping data, and diagnostic SNP markers.
RESUMO
Smut disease caused by the fungal pathogen Thecaphora frezii Carranza & Lindquist is threatening the peanut production in Argentina. Fungicides commonly used in the peanut crop have shown little or no effect controlling the disease, making it a priority to obtain peanut varieties resistant to smut. In this study, recombinant inbred lines (RILs) were developed from three crosses between three susceptible peanut elite cultivars (Arachis hypogaea L. subsp. hypogaea) and two resistant landraces (Arachis hypogaea L. subsp. fastigiata Waldron). Parents and RILs were evaluated under high inoculum pressure (12000 teliospores g-1 of soil) over three years. Disease resistance parameters showed a broad range of variation with incidence mean values ranging from 1.0 to 35.0% and disease severity index ranging from 0.01 to 0.30. Average heritability (h2) estimates of 0.61 to 0.73 indicated that resistance in the RILs was heritable, with several lines (4 to 7 from each cross) showing a high degree of resistance and stability over three years. Evidence of genetic transfer between genetically distinguishable germplasm (introgression in a broad sense) was further supported by simple-sequence repeats (SSRs) and Insertion/Deletion (InDel) marker genotyping. This is the first report of smut genetic resistance identified in peanut landraces and its introgression into elite peanut cultivars.