Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745946

RESUMO

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Carioferinas/metabolismo , Camundongos , Morfolinas/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
2.
J Biomol Screen ; 17(5): 572-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22357874

RESUMO

Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder that affects multiple organs. Treatment is mainly surgical, and effective systemic therapies are needed. We developed a cell-based screening tool to identify compounds that stabilize or upregulate full-length, point-mutated VHL protein. The 786-0 cell line was infected with full-length W117A-mutated VHL linked to a C-terminal Venus fluorescent protein. This VHL-W117A-Venus line was used to screen the Prestwick drug library and was tested against proteasome inhibitors MG132 and bortezomib. Western blot validation and evaluation of functional readouts, including hypoxia-inducible factor 2α (HIF2α) and glucose transporter 1 (Glut1) levels, were performed. We found that bortezomib, MG132, and the Prestwick compounds 8-azaguanine, thiostrepton, and thioguanosine upregulated VHL-W117A-Venus in 786-0 cells. 8-Azaguanine downregulated HIF2α levels and was augmented by the presence of VHL W117A. VHL p30 band intensities varied as a function of compound used, suggesting alternate posttranslational processing. Nuclear-cytoplasmic localization of VHL-W117A-Venus varied among the different compounds. In conclusion, a 786-0 cell line containing VHL-W117A-Venus was successfully used to identify compounds that upregulate VHL levels, with differential effect on VHL intracellular localization and posttranslational processing. Further screening efforts will broaden the number of pharmacophores available to develop therapeutic agents that will upregulate and refunctionalize mutated VHL.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas/métodos , Humanos , Leupeptinas/farmacologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Estabilidade Proteica/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA