Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sensors (Basel) ; 22(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890859

RESUMO

A highly polarizable moisture sensor with multimodal sensing capabilities has great advantages for healthcare applications such as human respiration monitoring. We introduce an ionically polarizable moisture sensor based on NaCl/BaTiO3 composite films fabricated using a facile aerosol deposition (AD) process. The proposed sensing model operates based on an enormous NaCl ionization effect in addition to natural moisture polarization, whereas all previous sensors are based only on the latter. We obtained an optimal sensing performance in a 0.5 µm-thick layer containing NaCl-37.5 wt% by manipulating the sensing layer thickness and weight fraction of NaCl. The NaCl/BaTiO3 sensing layer exhibits outstanding sensitivity over a wide humidity range and a fast response/recovery time of 2/2 s; these results were obtained by performing the one-step AD process at room temperature without using any auxiliary methods. Further, we present a human respiration monitoring system using a sensing device that provides favorable and stable electrical signals under diverse respiratory scenarios.


Assuntos
Taxa Respiratória , Cloreto de Sódio , Aerossóis , Humanos , Umidade , Monitorização Fisiológica
2.
Analyst ; 146(7): 2131-2137, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33861260

RESUMO

As inflammation plays a role in the pathogenesis of acute coronary syndromes, C-reactive protein (CRP) can be used as a biomarker. To detect CRP precisely, the authors prepared a CRP electrochemical biosensor consisting of an eight Ag ion-intercalated multifunctional DNA four-way junction (MF-DNA-4WJ) and a porous rhodium nanoparticle (pRhNP) heterolayer on a micro-gap electrode. To increase conductivity, we used eight Ag+ ion-inserted DNA four-way junctions through a C-C mismatch. Each DNA 4WJ was designed to have the CRP aptamer sequence, an anchoring region (thiol group), and two of four C-C mismatch regions at the end of the fragments. After an annealing step, the MF-DNA-4WJ assembly configuration and selective binding of CRP were confirmed through native TBM-PAGE (Tris-borate-magnesium chloride-polyacrylamide gel electrophoresis). The Au micro-gap electrode was fabricated to load 5 µl of the sample, and this was performed during eight experiments on one chip to establish the accuracy of the data. Then, pRhNPs were immobilized on a Au micro-gap electrode using cysteamine. To confirm the electrochemical properties, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were conducted. The durability of pRhNPs was confirmed through CV. To test the sensing performance of the prepared CRP biosensor, the limit of detection (LOD) and selectivity tests were conducted using EIS. The results indicated that charge transfer resistance (Rct) can be used efficiently to probe these interactions within the variable CRP concentration range, from 1 pM to 100 nM (0.23 ng L-1-23 µg L-1). The LOD of this sensor was 0.349 pM (0.08 ng L-1) (at S/N = 3). As a result of diluting the CRP to the same concentration range in a 20% human serum sample, the LOD was 3.55 fM (0.814 pg L-1) (at S/N = 3).


Assuntos
Técnicas Biossensoriais/métodos , Proteína C-Reativa/análise , DNA/química , Ouro/química , Ródio/química , Prata/química , DNA/genética , Técnicas Eletroquímicas , Eletrodos , Humanos , Nanopartículas Metálicas , Sensibilidade e Especificidade
3.
Phys Chem Chem Phys ; 20(4): 2914, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29303525

RESUMO

Correction for 'Direct characterization of graphene doping state by in situ photoemission spectroscopy with Ar gas cluster ion beam sputtering' by Dong-Jin Yun et al., Phys. Chem. Chem. Phys., 2018, 20, 615-622.

4.
J Nanosci Nanotechnol ; 18(8): 5817-5821, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458646

RESUMO

CdO nanoparticles were utilized in the fabrication of a composite membrane containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF-4) for CO2 separation. The use of BMIM+BF-4containing CdO nanoparticles as a CO2 separator greatly improved separation performance. The ideal selectivity for CO2/N2 was 32.5 with a CO2 permeance of 57.1 GPU when CdO 4 liquid. The enhanced separation performance nanoparticles were incorporated into the BMIM+BF-4and the was attributed to increased CO2 solubility facilitated by both the free ions in BMIM+BF-4 oxide layer of the CdO nanoparticle. The CdO nanoparticles were identified with transmission electron microscopy and the physical and chemical properties of the membranes were investigated using scanning electron microscopy, Raman spectroscopy and TGA. Interestingly, we found a correlation between CO2 permeance and electronegativity differences between the metal and oxygen for CO2 separation membrane. The electronegativity differences between the metal and oxygen was ZnO (1.79) > CdO (1.75) > CuO (1.54) > AgO (1.51). The order of CO2 permeance was ZnO in BMIM+BF-4 (101 GPU) > CdO in BMIM+BF-4 (57.1 GPU) > CuO in BMIM+BF-4 (52.4 GPU) > AgO in BMIM+BF-4 (14.1 GPU).

5.
Adv Exp Med Biol ; 1064: 263-296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471039

RESUMO

The field of bioelectronics has paved the way for the development of biochips, biomedical devices, biosensors and biocomputation devices. Various biosensors and biomedical devices have been developed to commercialize laboratory products and transform them into industry products in the clinical, pharmaceutical, environmental fields. Recently, the electrochemical bioelectronic devices that mimicked the functionality of living organisms in nature were applied to the use of bioelectronics device and biosensors. In particular, the electrochemical-based bioelectronic devices and biosensors composed of biomolecule-nanoparticle hybrids have been proposed to generate new functionality as alternatives to silicon-based electronic computation devices, such as information storage, process, computations and detection. In this chapter, we described the recent progress of bioelectronic devices and biosensors based on biomaterial-nanomaterial hybrid.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas , Nanopartículas
6.
Phys Chem Chem Phys ; 20(1): 615-622, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29227482

RESUMO

On the basis of an in situ photoemission spectroscopy (PES) system, we propose a novel, direct diagnosis method for the characterization of graphene (Gr) doping states at organic semiconductor (OSC)/electrode interfaces. Our in situ PES system enables ultraviolet/X-ray photoelectron spectroscopy (UPS/XPS) measurements during the OSC growth or removal process. We directly deposit C60 films on three different p-type dopants-gold chloride (AuCl3), (trifluoromethyl-sulfonyl)imide (TFSI), and nitric acid (HNO3). We periodically characterize the chemical/electronic state changes of the C60/Gr structures during their aging processes under ambient conditions. Depositing the OSC on the p-type doped Gr also prevents severe degradation of the electrical properties, with almost negligible transition over one month, while the p-type doped Gr without an OSC changes a lot following one month of aging. Our results indicate that the chemical/electronic structures of the Gr layer are completely reflected in the energy level alignments at the C60/Gr interfaces. Therefore, we strongly believe that the variation of energy level alignments at the OSC/graphene interface is a key standard for determining the doping state of graphene after a certain period of aging.

7.
Angew Chem Int Ed Engl ; 54(14): 4325-9, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25663183

RESUMO

Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries.

8.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984234

RESUMO

Zika virus (ZV) infection causes fatal hemorrhagic fever. Most patients are unaware of their symptoms; therefore, a rapid diagnostic tool is required to detect ZV infection. To solve this problem, we developed a rapid electrical biosensor composed of a truncated DNA aptamer immobilized on an interdigitated gold micro-gap electrode and alternating current electrothermal flow (ACEF) technique. The truncated ZV aptamer (T-ZV apt) was prepared to reduce the manufacturing cost for biosensor fabrication, and it showed binding affinity similar to that of the original ZV aptamer. This pulse-voltammetry-based biosensor was composed of a T-ZV apt immobilized on an interdigitated micro-gap electrode. Atomic force microscopy was used to confirm the biosensor fabrication. In addition, the optimal biosensor performance conditions were investigated using pulse voltammetry. ACEF promoted aptamer-target binding, and the target virus envelope protein was detected in the diluted serum within 10 min. The biosensor waveform increased linearly as the concentration of the Zika envelope in the serum increased, and the detection limit was 90.1 pM. Our results suggest that the fabricated biosensor is a significant milestone for rapid virus detection.

9.
Phys Chem Chem Phys ; 14(37): 12741-5, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22886283

RESUMO

Silicon core-hollow carbon shell nanocomposites with controllable voids between silicon nanoparticles and hollow carbon shell were easily synthesized by a two-step coating method and exhibited different charge-discharge cyclability as anodes for lithium-ion batteries. The best capacity retention can be achieved with a void/Si volume ratio of approx. 3 due to its appropriate volume change tolerance and maintenance of good electrical contacts.

10.
Angew Chem Int Ed Engl ; 51(42): 10546-50, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23001891

RESUMO

From droplets to "spheres": A platform technology enables the rapid and continuous synthesis of mesoporous metal and metal alloy particles (see picture). The confined growth of nanocrystals in aerosol droplets leads to the formation of these particles with defined composition.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas/química , Ligas/química , Cristalização , Porosidade , Propriedades de Superfície
11.
Membranes (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557136

RESUMO

In this study, CuO nanoparticles and p-benzoquinone (p-BQ) were added to a polyvinylpyrrolidone (PVP) matrix to increase N2/CO2 selectivity. The added p-BQ allowed CuO to be distributed in a uniform size in the PVP/CuO composite membrane and the matrix to be flexible by forming the interaction with PVP. The surface modification of CuO by p-BQ and the well-dispersed size affected the increase in the separation performance. The PVP/CuO/p-BQ composite membranes showed an N2/CO2 selectivity of about 23.1 with N2 permeance of about 13.3 GPU, while the separation performance of PVP was not observed. The enhanced separation performance is attributable to the surface of CuO nanoparticles modified by p-BQ inducing CO2 molecules to be relatively slowly transported by the adsorption properties in the polymer matrix. The chemical properties and coordinative interaction for PVP/CuO/p-BQ composite membrane were measured by FT-IR spectroscopy, thermogravimetric analysis, UV-vis, scanning electron microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy.

12.
ACS Omega ; 7(2): 1785-1793, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071872

RESUMO

Oxidative coupling of methane (OCM) is a reaction to directly convert methane into high value-added hydrocarbons (C2+) such as ethylene and ethane using molecular oxygen and a catalyst. This work investigated lanthanum oxide catalysts for OCM, which were promoted with alkaline-earth metal oxides (Mg, Ca, Sr, and Ba) and prepared by the solution-mixing method. The synthesized catalysts were characterized using X-ray powder diffraction, CO2-programmed desorption, and X-ray photoelectron spectroscopy. The comparative performance of each promoter showed that promising lanthanum-loaded alkaline-earth metal oxide catalysts were La-Sr and La-Ba. In contrast, the combination of La with Ca or Mg did not lead to a clear improvement of C2+ yield. The most promising LaSr50 catalyst exhibited the highest C2+ yield of 17.2%, with a 56.0% C2+ selectivity and a 30.9% CH4 conversion. Catalyst characterization indicated that their activity was strongly associated with moderate basic sites and surface-adsorbed oxygen species of O2 -. Moreover, the catalyst was stable over 25 h at a reactor temperature of 700 °C.

13.
Sci Rep ; 11(1): 23042, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845268

RESUMO

Glycerol is a low-cost byproduct of the biodiesel manufacturing process, which can be used to synthesize various value-added chemicals. Among them, 1,2-propanediol (1,2-PDO) is of great interest because it can be used as an intermediate and additive in many applications. This work investigated the hydrogenolysis of glycerol to 1,2-PDO over Co-Cu bimetallic catalysts supported on TiO2 (denoted as CoCu/TiO2) in aqueous media. The catalysts were prepared using the co-impregnation method and their physicochemical properties were characterized using several techniques. The addition of appropriate Cu increased the glycerol conversion and the 1,2-PDO yield. The highest 1,2-PDO yield was achieved over a 15Co0.5Cu/TiO2 catalyst at 69.5% (glycerol conversion of 95.2% and 1,2-PDO selectivity of 73.0%). In the study on the effects of operating conditions, increasing the reaction temperature, initial pressure, and reaction time increased the glycerol conversion but decreased the selectivity to 1,2-PDO due to the degradation of formed 1,2-PDO to lower alcohols (1-propanol and 2-propanol). The reaction conditions to obtain the maximum 1,2-PDO yield were a catalyst-to-glycerol ratio of 0.028, a reaction temperature of 250 °C, an initial H2 pressure of 4 MPa, and a reaction time of 4 h.

14.
Materials (Basel) ; 14(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445498

RESUMO

The outbreak of the influenza virus (H1N1) has symptoms such as coughing, fever, and a sore throat, and due to its high contagious power, it is fatal to humans. To detect H1N1 precisely, the present study proposed an electrochemical biosensor composed of a multifunctional DNA four-way junction (4WJ) and carboxyl molybdenum disulfide (carboxyl-MoS2) hybrid material. The DNA 4WJ was constructed to have the hemagglutinin aptamer on the head group (recognition part); each of the two arms has four silver ions (signal amplification part), and the tail group has an amine group (anchor). This fabricated multifunctional DNA 4WJ can specifically and selectively bind to hemagglutinin. Moreover, the carboxyl-MoS2 provides an increase in the sensitivity of this biosensor. Carboxyl-MoS2 was immobilized using a linker on the electrode, followed by the immobilization of the multifunctional 4WJ on the electrode. The synthesis of carboxyl-MoS2 was confirmed by field emission scanning electron microscopy (FE-SEM), and the surface of the electrode was confirmed by atomic force microscopy. When H1N1 was placed in the immobilized electrode, the presence of H1N1 was confirmed by electrochemical analysis (cyclic voltammetry, electrochemical impedance spectroscopy). Through selectivity tests, it was also possible to determine whether this sensor responds specifically and selectively to H1N1. We confirmed that the biosensor showed a linear response to H1N1, and that H1N1 could be detected from 100 nM to 10 pM. Finally, clinical tests, in which hemagglutinin was diluted with human serum, showed a similar tendency to those diluted with water. This study showed that the multi-functional DNA 4WJ and carboxyl-MoS2 hybrid material can be applied to a electrochemical H1N1 biosensor.

15.
ACS Appl Mater Interfaces ; 13(9): 11396-11402, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33480686

RESUMO

Facile strategies in flexible transparent conductive electrode materials that can sustain their electrical conductivities under 1 mm-scale radius of curvature are required for wider applications such as foldable devices. We propose a rational design as well as a fabrication process for a silver nanowire-based transparent conductive electrode with low sheet resistance and high transmittance even after prolonged cyclic bending. The electrode is fabricated on a poly(ethylene terephthalate) film through the hybridization of silver nanowires with silver nanoparticles-anchored RuO2 nanosheets. This hybridization significantly improves the performance of the silver nanowire network under severe bending strain and creates an electrically percolative structure between silver nanowires and RuO2 nanosheets in the presence of anchored silver nanoparticles on the surface of RuO2 nanosheets. The resistance change of this hybrid transparent conductive electrode is 8.8% after 200,000 bending cycles at a curvature radius of 1 mm, making it feasible for use in foldable devices.

16.
Biochip J ; 14(4): 327-339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224441

RESUMO

In nowadays, we have entered the new era of pandemics and the significance of virus detection deeply impacts human society. Viruses with genetic mutations are reported nearly every year, and people have prepared tools to detect the virus and vaccines to ensure proper treatments. Influenza virus (IV) is one of the most harmful viruses reporting various mutations, sub-types, and rapid infection speed for humans and animals including swine and poultry. Moreover, IV infection presents several harmful symptoms including cough, fever, diarrhea, chills, even causing death. To reduce the IV-induced harm, its proper and rapid detection is highly required. Conventional techniques were used against various IV sub-types including H1N1, H3N2, and H5N1. However, some of the techniques are time-consuming, expensive, or labor-intensive for detecting IV. Recently, the nucleic acid-based aptamer has gained attention as a novel bioprobe for constructing a biosensor. In this review, the authors discuss the recent progress in aptasensors for detecting IV in terms of an electrochemical and an optical biosensor.

17.
ACS Omega ; 5(23): 13612-13620, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566826

RESUMO

Na2WO4-TiO2-MnO x /SiO2 (SM) catalysts with alkali (Li, K, Rb, Cs) or alkali earth (Mg, Ca, Sr, Ba) oxide additives, which were prepared using incipient wetness impregnation, were investigated for oxidative coupling of methane (OCM) to value-added hydrocarbons (C2+). A screening test that was performed on the catalysts revealed that SM with Sr (SM-Sr) had the highest yield of C2+. X-ray photoelectron spectroscopy analyses indicated that the catalysts with a relatively low binding energy of W 4f7/2 facilitated a high CH4 conversion. A combination of crystalline MnTiO3, Mn2O3, α-cristobalite, Na2WO4, and TiO2 phases was identified as an essential component for a remarkable improvement in the activity of the catalysts in the OCM reaction. In attempts to optimize the C2+ yield, 0.25 wt % Sr onto SM-Sr achieved the highest C2+ yield at 22.9% with a 62.5% C2+ selectivity and a 36.6% CH4 conversion. A stability test of the optimal catalyst showed that after 24 h of testing, its activity decreased by 18.7%.

18.
Materials (Basel) ; 13(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784985

RESUMO

With the acceleration of the Fourth Industrial Revolution, the development of information and communications technology requires innovative information storage devices and processing devices with low power and ultrahigh stability. Accordingly, bioelectronic devices have gained considerable attention as a promising alternative to silicon-based devices because of their various applications, including human-body-attached devices, biomaterial-based computation systems, and biomaterial-nanomaterial hybrid-based charge storage devices. Nanomaterial-based charge storage devices have witnessed considerable development owing to their similarity to conventional charge storage devices and their ease of applicability. The introduction of a biomaterial-to-nanomaterial-based system using a combination of biomolecules and nanostructures provides outstanding electrochemical, electrical, and optical properties that can be applied to the fabrication of charge storage devices. Here, we describe the recent advances in charge storage devices containing a biomolecule and nanoparticle heterolayer including (1) electrical resistive charge storage devices, (2) electrochemical biomemory devices, (3) field-effect transistors, and (4) biomemristors. Progress in biomolecule-nanomaterial heterolayer-based charge storage devices will lead to unprecedented opportunities for the integration of information and communications technology, biotechnology, and nanotechnology for the Fourth Industrial Revolution.

19.
Micromachines (Basel) ; 11(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526961

RESUMO

We prepared the hybrid conductor of the Ag nanowire (NW) network and irregularly patterned graphene (GP) mesh with enhanced optical transmittance (~98.5%) and mechano-electric stability (ΔR/Ro: ~42.4% at 200,000 (200k) cycles) under 6.7% strain. Irregularly patterned GP meshes were prepared with a bottom-side etching method using chemical etchant (HNO3). The GP mesh pattern was judiciously and easily tuned by the regulation of treatment time (0-180 min) and concentration (0-20 M) of chemical etchants. As-formed hybrid conductor of Ag NW and GP mesh exhibit enhanced/controllable electrical-optical properties and mechano-electric stabilities; hybrid conductor exhibits enhanced optical transmittance (TT = 98.5%) and improved conductivity (ΔRs: 22%) compared with that of a conventional hybrid conductor at similar TT. It is also noteworthy that our hybrid conductor shows far superior mechano-electric stability (ΔR/Ro: ~42.4% at 200k cycles; TT: ~98.5%) to that of controls (Ag NW (ΔR/Ro: ~293% at 200k cycles), Ag NW-pristine GP hybrid (ΔR/Ro: ~121% at 200k cycles)) ascribed to our unique hybrid structure.

20.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952283

RESUMO

We investigated the flash light sintering process to effectively reduce electrical resistance in silver nanowire networks. The optimum condition of the flash light sintering process reduces the electrical resistance by ~20%, while the effect of the conventional thermal annealing processes is rather limited for silver nanowire networks. After flash light sintering, the morphology of the junction between the silver nanowires changes to a mixed-phase structure of the two individual nanowires. This facile and fast process for silver nanowire welding could be highly advantageous to the mass production of silver nanowire networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA