Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372985

RESUMO

This study reports the preparation of silica-coated and nano-fructosome encapsulated Candida antarctica lipase B particles (CalB@NF@SiO2) and a demonstration of their enzymatic hydrolysis and acylation. CalB@NF@SiO2 particles were prepared as a function of TEOS concentration (3-100 mM). Their mean particle size was 185 nm by TEM. Enzymatic hydrolysis was performed to compare catalytic efficiencies of CalB@NF and CalB@NF@SiO2. The catalytic constants (Km, Vmax, and Kcat) of CalB@NF and CalB@NF@SiO2 were calculated using the Michaelis-Menten equation and Lineweaver-Burk plot. Optimal stability of CalB@NF@SiO2 was found at pH 8 and a temperature of 35 °C. Moreover, CalB@NF@SiO2 particles were reused for seven cycles to evaluate their reusability. In addition, enzymatic synthesis of benzyl benzoate was demonstrated via an acylation reaction with benzoic anhydride. The efficiency of CalB@NF@SiO2 for converting benzoic anhydride to benzyl benzoate by the acylation reaction was 97%, indicating that benzoic anhydride was almost completely converted to benzyl benzoate. Consequently, CalB@NF@SiO2 particles are better than CalB@NF particles for enzymatic synthesis. In addition, they are reusable with high stability at optimal pH and temperature.


Assuntos
Enzimas Imobilizadas , Dióxido de Silício , Hidrólise , Proteínas Fúngicas
2.
Appl Microbiol Biotechnol ; 106(21): 7063-7072, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36195703

RESUMO

Protein expression with a fusion partner followed by the removal of the fusion partner via in vitro processing with a specific endoprotease is a favored method for the efficient production of intact recombinant proteins. Due to the high cost of commercial endoproteases, this process is restricted to laboratories. Kex2p is a membrane-bound serine protease that cleaves after dibasic residues of substrates in the late Golgi network. Although Kex2p is a very efficient endoprotease with exceptional specificity, it has not yet been used for the in vitro processing of fusion proteins due to its autolysis and high production cost. In this study, we developed an alternative endoprotease, autolysis-proof Kex2p, via site-directed mutagenesis of truncated KEX2 from Candida albicans (CaKEX2). Secretory production of manipulated CaKex2p was improved by employing target protein-specific translational fusion partner in Saccharomyces cerevisiae. The mass production of autolysis-proof Kex2p could facilitate the use of Kex2p for the large-scale production of recombinant proteins. KEY POINTS: • A soluble and active CaKex2p variant was produced by autocatalytic cleavage of the pro-peptide after truncation of C-terminus • Autolysis-proof CaKex2p was developed by site-directed mutagenesis • Secretion of autolysis-proof CaKex2p was improved by employing optimal translational fusion partner in Saccharomyces cerevisiae.


Assuntos
Proteínas Fúngicas , Pró-Proteína Convertases , Saccharomyces cerevisiae , Candida albicans/enzimologia , Candida albicans/genética , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Pró-Proteína Convertases/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Subtilisinas/metabolismo , Proteínas Fúngicas/biossíntese
3.
Appl Microbiol Biotechnol ; 106(2): 663-673, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34971409

RESUMO

For the efficient production of heterologous proteins in the yeast Saccharomyces cerevisiae, we screened for a novel fusion partner from the yeast secretome. From twenty major proteins identified from the yeast secretome, we selected Scw4p, a cell wall protein with similarity to glucanase, and modified to develop a general fusion partner for the secretory expression of heterologous proteins in yeast. The optimal size of the SCW4 gene to act as an efficient fusion partner was determined by C-terminal truncation analysis; two of the variants, S1 (truncated at codon 115Q) and S2 (truncated at codon 142E), were further used for the secretion of heterologous proteins. When fused with S2, the secretion of three target proteins (hGH, exendin-4, and hPTH) significantly increased. Conserved O-glycosylation sites (Ser/Thr-rich domain) and hydrophilic sequences of S2 were deemed important for the function of S2 as a secretion fusion partner. Approximately 5 g/L of the S2-exendin-4 fusion protein was obtained from fed-batch fermentation. Intact target proteins were easily purified by affinity chromatography after in vitro processing of the fusion partner. This system may be of general application for the secretory production of heterologous proteins in S. cerevisiae. KEY POINTS : • Target proteins were efficiently secreted with their N-terminus fused to Scw4p. • O-glycosylation and hydrophilic stretches in Scw4p were important for protein secretion. • A variant of Scw4p (S2) was successfully applied for the secretory expression of heterologous proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Secretoma
4.
Microb Cell Fact ; 20(1): 232, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963459

RESUMO

BACKGROUND: Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. RESULTS: A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. CONCLUSIONS: The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli.


Assuntos
Carboidratos/química , Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Álcool Desidrogenase/biossíntese , Álcool Desidrogenase/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Proteína Morfogenética Óssea 7/biossíntese , Proteína Morfogenética Óssea 7/isolamento & purificação , Proteínas de Transporte/biossíntese , Proteínas de Transporte/isolamento & purificação , Clonagem Molecular , Fator de Crescimento Epidérmico/biossíntese , Fator de Crescimento Epidérmico/isolamento & purificação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Humanos , Hidrolases/biossíntese , Hidrolases/isolamento & purificação , Corpos de Inclusão/metabolismo , Lipase/biossíntese , Lipase/isolamento & purificação , Proteínas Ligantes de Maltose , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação
5.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769345

RESUMO

Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent synthetic antimicrobial peptide, and the adhesiveness and antibacterial properties of the resulting peptides are evaluated. The peptide is successfully immobilized on polystyrene, titanium, and polydimethylsiloxane surfaces within 10 min in a one-step coating process with no prior surface functionalization. The antibacterial effectiveness of the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces is confirmed by complete inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus within 2 h. The stability of the peptide coated on the substrate surface is maintained for 84 days, as confirmed by its bactericidal activity. Additionally, the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces show no cytotoxicity toward the human keratinocyte cell line HaCaT. The antimicrobial properties of the peptide-coated surfaces are confirmed in a subcutaneous implantation animal model. The adhesive antimicrobial peptide developed in this study exhibits potential as an antimicrobial surface-coating agent for efficiently killing a broad spectrum of bacteria on contact.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fenilalanina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Escherichia coli/crescimento & desenvolvimento , Humanos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento
6.
J Ind Microbiol Biotechnol ; 46(11): 1611-1620, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31230216

RESUMO

Levan is a fructose polymer with diverse applications in the food and medical industries. In this study, levansucrase from Rahnella aquatilis (RaLsrA) was hyper-secreted using a Saccharomyces cerevisiae protein secretion system. An optimal secretion signal, a translation fusion partner (TFP) containing an N-terminal 98 amino acid domain from a mitochondrial inner membrane protein, UTH1, was employed to secrete approximately 50 U/mL of bioactive RaLsrA into culture media with 63% secretion efficiency by fed-batch fermentation. Although the purified RaLsrA was useful for enzymatic conversion of high-molecular-weight levan of approximately 3.75 × 106 Da, recombinant yeast secreting RaLsrA could produce levan more efficiently by microbial fermentation. In a 50-L scale fermenter, 76-g/L levan was directly converted from 191-g/L sucrose by recombinant yeast cells, attaining an 80% conversion yield and 3.17-g/L/h productivity. Thus, we developed a cost-effective and industrially applicable production system for food-grade levan.


Assuntos
Frutanos/biossíntese , Hexosiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Reatores Biológicos , Fermentação , Frutose/metabolismo , Hexosiltransferases/genética , Saccharomyces cerevisiae/genética , Sacarose/metabolismo
7.
Biotechnol Bioeng ; 115(9): 2232-2242, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29896854

RESUMO

Lactic acid is a platform chemical for the sustainable production of various materials. To develop a robust yeast platform for low-pH production of d-lactic acid (LA), an acid-tolerant yeast strain was isolated from grape skins and named Pichia kudriavzevii NG7 by ribosomal RNA sequencing. This strain could grow at pH 2.0 and 50°C. For the commercial application of P. kudriavzevii NG7 as a lactic acid producer, the ethanol fermentation pathway was redirected to lactic acid by replacing the pyruvate decarboxylase 1 gene (PDC1) with the d-lactate dehydrogenase gene (d-LDH) derived from Lactobacillus plantarum. To enhance lactic acid tolerance, this engineered strain was adapted to high lactic acid concentrations, and a new transcriptional regulator, PAR1, responsible for acid tolerance, was identified by whole-genome resequencing. The final engineered strain produced 135 g/L and 154 g/L of d-LA with productivity over 3.66 g/L/hr at pH 3.6 and 4.16 g/L/hr at pH 4.7, respectively.


Assuntos
Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Pichia/isolamento & purificação , Pichia/metabolismo , Ácidos/toxicidade , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Tolerância a Medicamentos , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas/genética , Filogenia , Pichia/classificação , Pichia/efeitos dos fármacos , Análise de Sequência de DNA , Temperatura , Vitis/microbiologia
8.
Appl Environ Microbiol ; 82(8): 2280-2287, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850302

RESUMO

Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii.


Assuntos
Engenharia Metabólica/métodos , Probióticos , Saccharomyces/genética , Expressão Gênica , Genética Microbiana , Biologia Molecular/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces/crescimento & desenvolvimento
9.
Biotechnol Bioeng ; 113(12): 2587-2596, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27240865

RESUMO

Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+ -linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited for in situ detoxification of acetic acid in cellulosic hydrolysate and increasing ethanol productivity and yield. Biotechnol. Bioeng. 2016;113: 2587-2596. © 2016 Wiley Periodicals, Inc.


Assuntos
Acetatos/metabolismo , Aldeído Oxirredutases/metabolismo , Celulose/metabolismo , Coenzima A Ligases/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/fisiologia , Aldeído Oxirredutases/genética , Coenzima A Ligases/genética , Etanol/isolamento & purificação , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Oxirredução , Transdução de Sinais/fisiologia
10.
Biotechnol Bioeng ; 113(10): 2149-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27003667

RESUMO

Rapid advances in the capabilities of reading and writing DNA along with increasing understanding of microbial metabolism at the systems-level have paved an incredible path for metabolic engineering. Despite these advances, post-translational tools facilitating functional expression of heterologous enzymes in model hosts have not been developed well. Some bacterial enzymes, such as Escherichia coli xylose isomerase (XI) and arabinose isomerase (AI) which are essential for utilizing cellulosic sugars, cannot be functionally expressed in Saccharomyces cerevisiae. We hypothesized and demonstrated that the mismatching of the HSP60 chaperone systems between bacterial and eukaryotic cells might be the reason these bacterial enzymes cannot be functionally expressed in yeast. The results showed that the co-expression of E. coli GroE can facilitate the functional expression of E. coli XI and AI, as well as the Agrobacterium tumefaciens D-psicose epimerase in S. cerevisiae. The co-expression of bacterial chaperonins in S. cerevisiae is a promising post-translational strategy for the functional expression of bacterial enzymes in yeast. Biotechnol. Bioeng. 2016;113: 2149-2155. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/genética , Chaperonina 60/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
11.
Appl Microbiol Biotechnol ; 100(24): 10453-10461, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27412460

RESUMO

Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.


Assuntos
Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/genética
12.
Biotechnol Lett ; 36(1): 57-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078128

RESUMO

Klebsiella pneumoniae was engineered to produce 2-butanol from crude glycerol as a sole carbon source by expressing acetolactate synthase (ilvIH), keto-acid reducto-isomerase (ilvC) and dihydroxy-acid dehydratase (ilvD) from K. pneumoniae, and α-ketoisovalerate decarboxylase (kivd) and alcohol dehydrogenase (adhA) from Lactococcus lactis. Engineered K. pneumonia, ∆ldhA/pBR-iBO (ilvIH­ilvC­ilvD­kivd­adhA), produced 2-butanol (160 mg l−1) from crude glycerol. To increase the yield of 2-butanol, we eliminated the 2,3-butanediol pathway from the recombinant strain by inactivating α-acetolactate decarboxylase (adc). This further engineering step improved the yield of 2-butanol from 160 to 320 mg l−1. This represents the first successful attempt to produce 2-butanol from crude glycerol.


Assuntos
Butanóis/metabolismo , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Reatores Biológicos , Butanóis/análise , Fermentação , Engenharia Genética
13.
J Microbiol Biotechnol ; 34(4): 930-939, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314447

RESUMO

Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-ß-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.


Assuntos
Hericium , Lacase , Lignina , Saccharomyces cerevisiae , Lacase/metabolismo , Lacase/genética , Lacase/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Hericium/metabolismo , Hericium/genética , Hericium/enzimologia , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sequência de Aminoácidos , Clonagem Molecular , Azida Sódica/farmacologia , Agaricales/enzimologia , Agaricales/genética , Glicosilação
14.
Eukaryot Cell ; 11(12): 1584-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23193140

RESUMO

Kluyveromyces marxianus is a thermotolerant yeast that has been explored for potential use in biotechnological applications, such as production of biofuels, single-cell proteins, enzymes, and other heterologous proteins. Here, we present the high-quality draft of the 10.9-Mb genome of K. marxianus var. marxianus KCTC 17555 (= CBS 6556 = ATCC 26548).


Assuntos
Genoma Fúngico , Kluyveromyces/genética , Sequência de Bases , Bases de Dados Genéticas , Dados de Sequência Molecular
15.
Bioprocess Biosyst Eng ; 36(9): 1191-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23504238

RESUMO

In the present study, we established a genetic system for manipulating the oleaginous heterotrophic microalgae Aurantiochytrium sp. KRS101, using cycloheximide resistance as the selectable marker. The gene encoding ribosomal protein L44 (RPL44) of Aurantiochytrium sp. KRS101 was first identified and characterized. Proline 56 was replaced with glutamine, affording cycloheximide resistance to strains encoding the mutant protein. This resistance served as a novel selection marker. The gene encoding the Δ12-fatty acid desaturase of Mortierella alpina, used as a reporter, was successfully introduced into chromosomal DNA of Aurantiochytrium sp. KRS101 via 18S rDNA-targeted homologous recombination. Enzymatic conversion of oleic acid (C18:1) to linoleic acid (C18:2) was detected in transformants but not in the wild-type strain.


Assuntos
Alelos , Antifúngicos/farmacologia , Cicloeximida/farmacologia , Resistência a Medicamentos , Expressão Gênica , Mutação , Proteínas Ribossômicas/biossíntese , Estramenópilas , Transgenes , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Marcadores Genéticos , Proteínas Ribossômicas/genética , Estramenópilas/genética , Estramenópilas/metabolismo
16.
Bioprocess Biosyst Eng ; 36(7): 959-63, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23053417

RESUMO

The oleaginous microalga Aurantiochytrium sp. KRS101 was cultivated in enzymatic hydrolysates of alkali-pretreated empty palm fruit bunches (EFBs), without prior detoxification process. The maximal levels of lipid and docosahexaenoic acid synthesized were 12.5 and 5.4 g L⁻¹ after cultivation for 36 h. Similar lipid levels were also obtained via simultaneous saccharification and cultivation. The results suggested that EFB is a promising source for production of useful lipids by the microalgal strain.


Assuntos
Arecaceae/metabolismo , Ácidos Docosa-Hexaenoicos/análise , Lipídeos/biossíntese , Estramenópilas/metabolismo , Metabolismo dos Carboidratos , Fermentação , Lipídeos/química
17.
J Microbiol Biotechnol ; 33(11): 1403-1411, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37482811

RESUMO

Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Dióxido de Carbono/metabolismo , Mudança Climática , Oxirredução
18.
J Microbiol Biotechnol ; 33(11): 1513-1520, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37482809

RESUMO

Kex2 protease (Kex2p) is a membrane-bound serine protease responsible for the proteolytic maturation of various secretory proteins by cleaving after dibasic residues in the late Golgi network. In this study, we present an application of Kex2p as an alternative endoprotease for the in vitro processing of recombinant fusion proteins produced by the yeast Saccharomyces cerevisiae. The proteins were expressed with a fusion partner connected by a Kex2p cleavage sequence for enhanced expression and easy purification. To avoid in vivo processing of fusion proteins by Kex2p during secretion and to guarantee efficient removal of the fusion partners by in vitro Kex2p processing, P1', P2', P4, and P3 sites of Kex2p cleavage sites were elaborately manipulated. The general use of Kex2p in recombinant protein production was confirmed using several recombinant proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peptídeo Hidrolases/metabolismo , Pró-Proteína Convertases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Subtilisinas/química
19.
Int J Biol Macromol ; 229: 181-187, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36587635

RESUMO

Human epidermal growth factor (hEGF) has been a subject of extensive research as its wide range of physiological functions has many potential applications. However, due to the low stability of hEGF, its physiological effect is easily lost under conditions of use. To compensate for this, we developed a stable delivery system using levan-based nanoparticles. The entrapment yield of various tested proteins was significantly improved by employing carboxymethyl levan (CML) instead of levan; the entrapment yield of the CML-hEGF nanoparticles was 84.1 %. The size and zeta potential of the nanoparticles were identified as 199.9 ± 3.87 nm and -19.1 mV, respectively, using scanning electron microscopy (SEM) and particle size analysis. Dual biological functions of the nanoparticles (skin regeneration and moisturizing) were identified through collagen synthesis activity and aquaporin 3 expression level analysis. Stability of the prepared nanoparticles was also investigated via cell proliferation activity comparison under mimicked physiological conditions. The CML-hEGF nanoparticles maintained cell proliferation activity over 100 % for 6 weeks, while free hEGF was almost inactivated within 2 weeks. Taken together, our results indicate that the CML-based hEGF nanoparticles can be used in pharma- and cosmeceutical applications, guaranteeing a high entrapment capability, functionality, and stability.


Assuntos
Cosmecêuticos , Humanos , Cosmecêuticos/metabolismo , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Pele/metabolismo , Frutanos/metabolismo
20.
J Anim Sci Technol ; 65(1): 16-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37093925

RESUMO

Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-ß), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-ß1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA