Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298889

RESUMO

The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.


Assuntos
Inflamação , Neoplasias , Humanos , Inflamação/tratamento farmacológico , Neoplasias/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Quimiocinas , Microambiente Tumoral
2.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947034

RESUMO

MERS-CoV was identified for the first time in Jeddah, Saudi Arabia in 2012 in a hospitalized patient. This virus subsequently spread to 27 countries with a total of 939 deaths and 2586 confirmed cases and now has become a serious concern globally. Camels are well known for the transmission of the virus to the human population. In this report, we have discussed the prediction, designing, and evaluation of potential siRNA targeting the ORF1ab gene for the inhibition of MERS-CoV replication. The online software, siDirect 2.0 was used to predict and design the siRNAs, their secondary structure and their target accessibility. ORF1ab gene folding was performed by RNAxs and RNAfold software. A total of twenty-one siRNAs were selected from 462 siRNAs according to their scoring and specificity. siRNAs were evaluated in vitro for their cytotoxicity and antiviral efficacy in Huh7 cell line. No significant cytotoxicity was observed for all siRNAs in Huh7 cells. The in vitro study showed the inhibition of viral replication by three siRNAs. The data generated in this study provide preliminary and encouraging information to evaluate the siRNAs separately as well as in combination against MERS-CoV replication in other cell lines. The prediction of siRNAs using online software resulted in the filtration and selection of potential siRNAs with high accuracy and strength. This computational approach resulted in three effective siRNAs that can be taken further to in vivo animal studies and can be used to develop safe and effective antiviral therapies for other prevalent disease-causing viruses.


Assuntos
Infecções por Coronavirus/terapia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , RNA Interferente Pequeno/farmacologia , Terapêutica com RNAi , Replicação Viral , Linhagem Celular , Infecções por Coronavirus/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
3.
Can J Microbiol ; 63(8): 649-660, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28376307

RESUMO

Mangrove habitats are ecologically important ecosystems that are under severe pressure worldwide because of environmental changes and human activities. In this study, 16S rRNA gene amplicon deep-sequencing was used to compare bacterial communities in Red Sea mangrove ecosystems at anthropogenically influenced coastal sites with those at a relatively pristine island site. In total, 32 phyla were identified from the mangrove rhizospheres, with Proteobacteria predominating at each of the studied sites; however, the relative abundance was significantly decreased at the coastal sites (Mastorah, MG-MS; Ar-Rayis, MG-AR) compared with the pristine island site near Dhahban (MG-DBI). The phyla Actinobacteria, Firmicutes, Acidobacteria, Chloroflexi, Spirochetes, and Planctomycetes were present at a relative abundance of >1% at the MG-MS and MG-AR sites, but their concentration was <1% at the MG-DBI site. A total of 1659 operational taxonomic units (OTUs) were identified at the species level, and approximately 945 OTUs were shared across the different sampling sites. Multivariate principal coordinate data analysis separated the MG-DBI site from the MG-AR and MG-MS cluster. Specific bacterial taxa were enriched at each location, and in particular, the genera Pseudoalteromonas and Cobetia were predominantly identified in the MG-DBI site compared with the anthropogenically influenced coastal sites.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Rizosfera , Microbiologia da Água , Acidobacteria/genética , Avicennia , Bactérias/genética , Firmicutes , Oceano Índico , Proteobactérias/classificação , RNA Ribossômico 16S/genética , Áreas Alagadas
4.
Virol J ; 12: 1, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25591713

RESUMO

BACKGROUND: Dengue viruses (DENVs) are mosquito-borne viruses which can cause disease ranging from mild fever to severe dengue infection. These viruses are endemic in several tropical and subtropical regions. Multiple outbreaks of DENV serotypes 1, 2 and 3 (DENV-1, DENV-2 and DENV-3) have been reported from the western region in Saudi Arabia since 1994. Strains from at least two genotypes of DENV-1 (Asia and America/Africa genotypes) have been circulating in western Saudi Arabia until 2006. However, all previous studies reported from Saudi Arabia were based on partial sequencing data of the envelope (E) gene without any reports of full genome sequences for any DENV serotypes circulating in Saudi Arabia. FINDINGS: Here, we report the isolation and the first complete genome sequence of a DENV-1 strain (DENV-1-Jeddah-1-2011) isolated from a patient from Jeddah, Saudi Arabia in 2011. Whole genome sequence alignment and phylogenetic analysis showed high similarity between DENV-1-Jeddah-1-2011 strain and D1/H/IMTSSA/98/606 isolate (Asian genotype) reported from Djibouti in 1998. Further analysis of the full envelope gene revealed a close relationship between DENV-1-Jeddah-1-2011 strain and isolates reported between 2004-2006 from Jeddah as well as recent isolates from Somalia, suggesting the widespread of the Asian genotype in this region. CONCLUSIONS: These data suggest that strains belonging to the Asian genotype might have been introduced into Saudi Arabia long before 2004 most probably by African pilgrims and continued to circulate in western Saudi Arabia at least until 2011. Most importantly, these results indicate that pilgrims from dengue endemic regions can play an important role in the spread of new DENVs in Saudi Arabia and the rest of the world. Therefore, availability of complete genome sequences would serve as a reference for future epidemiological studies of DENV-1 viruses.


Assuntos
Vírus da Dengue/classificação , Vírus da Dengue/genética , Genoma Viral , RNA Viral/genética , Análise de Sequência de DNA , Adulto , Animais , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Arábia Saudita/epidemiologia , Homologia de Sequência
5.
Biology (Basel) ; 13(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666894

RESUMO

Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002-2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent.

6.
Bioinformation ; 20(2): 91-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497067

RESUMO

Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis caused by RVFV in humans and livestock. Currently, there are no approved vaccines or antiviral therapies available. Additionally, in Saudi Arabia, there is a lack of a routine screening system to monitor RVFV in humans and animals which hinders to design and develop the preventive measures as well as the prediction of future outbreaks and the potential re-emergence of RVFV. Hence, we have performed the cloning, sequencing, and phylogenetic analysis, of nucleocapsid (N) protein gene. The sequence analysis showed high similarities with RVFV isolates reported from humans and animals. The highest similarity (99.5%) was observed with an isolate from Saudi Arabia (KU978775-Human) followed by 99.1% with four RVFV isolates (Human and Bovine) from other locations. A total of 51 nucleotides and 31 amino acid variations were observed throughout the N protein gene sequences. The phylogenetic relationship formed closed clusters with other isolates collected from Saudi Arabia. Thus, we report of the cloning, sequencing, and phylogenetic analysis of the RVFV-N protein gene from Saudi Arabia.

7.
Toxics ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851040

RESUMO

During the COVID-19 pandemic, governments in many countries worldwide, including India, imposed several restriction measures, including lockdowns, to prevent the spread of the infection. COVID-19 lockdowns led to a reduction in gaseous and particulate pollutants in ambient air. In the present study, we investigated the substantial changes in selected volatile organic compounds (VOCs) after the outbreak of the coronavirus pandemic and associations with health risk assessments in industrial areas. VOC data from 1 January 2019 to 31 December 2021 were collected from the Central Pollution Control Board (CPCB) website, to identify percentage changes in VOC levels before, during, and after COVID-19. The mean TVOC levels at all monitoring stations were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 µg/m3 for 2019, 2020, and 2021, respectively. As a result, the TVOC levels gradually declined in consecutive years due to the pandemic in India. The mean TVOC levels at all monitoring stations declined from 9 to 61% during the pandemic period as compared with the pre-pandemic period. In the current study, the T/B ratio values ranged from 2.16 (PG) to 26.38 (NL), which indicated that the major pollutant contributors were traffic and non-traffic sources during the pre-pandemic period. The present findings indicated that TVOC levels had positive but low correlations with SR, BP, RF, and WD, with correlation coefficients (r) of 0.034, 0.118, 0.012, and 0.007, respectively, whereas negative correlations were observed with AT and WS, with correlation coefficients (r) of -0.168 and -0.150, respectively. The lifetime cancer risk (LCR) value for benzene was reported to be higher in children, followed by females and males, for the pre-pandemic, pandemic, and post-pandemic periods. A nationwide scale-up of this study's findings might be useful in formulating future air pollution reduction policies associated with a reduction in health risk factors. Furthermore, the present study provides baseline data for future studies on the impacts of anthropogenic activities on the air quality of a region.

8.
Life (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36362883

RESUMO

Breast cancer (BC) is one of the most frequent types of cancer that affect women. Human epidermal growth factor receptor-2 (HER2) is responsible for 20% of all BC cases. The use of anti-HER2 natural compounds in the cure of BC that is HER2-positive patients has resulted in significant increases in survival in both early and advanced stages. The findings of in-silico research support the use of ligands as possible HER2 inhibitors, and molecules with high free energy of binding may have considerable anti-BC action, making them candidates for future drug development. The inhibitory activity of selected ligands like ZINC43069427 and ZINC95918662 against HER2 was found to be -11.0 and -8.50 kcal/mol, respectively. The amino acid residues Leu726, Val734, Ala751, Lys753, Thr798, Gly804, Arg849, Leu852, Thr862, and Asp863 were found in common interaction as compared to the control compound Lapatinib. Molecular dynamics study calculations of these selected potent inhibitors were conducted and found to be stable over the 50 ns simulation time in terms of root mean square deviation (RMSD), root-mean square fluctuation (RMSF), radius of gyration (Rg), and solvent accessible surface area (SASA). In addition, there are several parameters such as absorption, distribution, metabolism, and excretion toxicity (ADMET), physicochemical, and drug-likeness that were checked and found in good range to be potential lead-like molecules. Several drug-likeness rules like Lipinski, Ghose, Veber, Egan, and Muegge were checked and found to be positive for these rules. Based on these calculations and different parameters, these top two selected natural compounds can be used as potential candidates for anti-HER2 for the management of BC.

9.
Front Oncol ; 12: 913231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965577

RESUMO

The hepatitis C virus (HCV) causes serious issues, affecting 71 million people globally. The most common manifestations range from chronic hepatitis to liver cirrhosis, leading to hepatocellular carcinoma. Many mechanisms are known to play an important role in HCV-induced HCC. The interaction of viral proteins with host cells results in oxidative stress damage, liver inflammation, and irregularities in signaling pathways. These results in the activation of oncogenes and metabolic disturbances, liver fibrosis, and angiogenesis. Additionally, some non-coding RNAs (ncRNAs) and toll-like receptors have been identified and play a significant role in HCC development. This virus is also associated with impairment of the central nervous system, resulting in acute or sub-acute encephalopathy and inflammatory disorders. Neurological disorders are associated with the inflammatory responses of many cells, including microglia and astrocytes. Additionally, there are many other extrahepatic manifestations, including neurological disorders such as depression and fatigue, in 50% of infected patients. These manifestations include neuro-invasion, immune-mediated damage, neurotransmitter alterations, sensory-motor polyneuropathy, sensitivity loss, weakness of the leg, and cryoglobulinemia, which significantly results in a reduced quality of life. HCV infection may be improved using an appropriate diagnosis and direct antiviral therapy for sustained virological response. However, the success of therapy depends on the symptoms and organ damage, diagnosis, and therapeutic strategies applied. Some published reports have discussed that HCV is associated with both HCC and neurological disorders. Additionally, it has also been observed that individuals with HCC also develop neurological disorders compared with individuals with HCV alone. This review aims to provide an overview of the latest information about the relationship between HCV-induced HCC and their role in neurological disorders. Additionally, we have also discussed the progress made in the diagnosis, physio-pathological mechanisms, and strong antiviral therapies developed for HCV infection and HCC, as well as the latest advancements made in the study of the neurological disorders associated with HCV infection.

10.
J King Saud Univ Sci ; 34(4): 101965, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35313445

RESUMO

Objectives: The COVID-19 was identified for the first time from the sea food market, Wuhan city, China in 2019 and the pathogenic organism was identified as SARS-CoV-2. Currently, this virus has spread to 223 countries and territories and known as a serious issue for the global human community. Many vaccines have been developed and used for immunization. Methods: We have reported the insilico prediction, designing, secondary structure prediction, molecular docking analysis, and in vitro assessment of siRNAs against SARS-CoV-2. The online bioinformatic approach was used for siRNAs selection and designing. The selected siRNAs were evaluated for antiviral efficacy by using Lipofectamine 2000 as delivery agent to HEK-293 cells. The MTT assay was used for cytotoxicity determination. The antiviral efficacy of potential siRNAs was determined based on the Ct value of q-RT-PCR and the data analysis was done by Prism-GraphPad software. Results: The analyzed data resulted in the selection of only three siRNAs out of twenty-six siRNAs generated by online software. The secondary structure prediction and molecular docking analysis of siRNAs revealed the efficient binding to the target. There was no cellular toxicity observed in the HEK-293 cells at any tested concentrations of siRNAs. The purification of RNA was completed from inoculated cells and subjected to q-RT-PCR. The highest Ct value was observed in siRNA 3 than the others. The results offered valuable evidence and invigorated us to assess the potency of siRNAs by using alone or in combination in other human cells. Conclusion: The data generated from this study indicates the significance of in silico prediction and narrow down the potential siRNA' against SARS-CoV-2, and molecular docking investigation offered the effective siRNAs binding with the target. Finally, it is concluded that the online bioinformatics approach provided the prediction and selection of siRNAs with better antiviral efficacy. The siRNA-3 was observed to be the best for reduction of viral RNA in cells.

11.
Pharmaceuticals (Basel) ; 15(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631436

RESUMO

The escalating transmission of hospital-acquired infections, especially those due to antimicrobial-resistant bacteria, is a major health challenge worldwide. In this study, a culturomic analysis of bacterial community in a tertiary care hospital in the western region of Saudi Arabia is performed using environmental samples. The genome sequencing of four Acinetobacter baumannii was performed on isolates recovered from an intensive care unit (ICU) environment and clinical samples. A total of 361 bacterial isolates from surface and air samples were identified by MALDI-TOF technique or 16S rRNA gene sequencing. The isolates were classified into 70 distinct species, including ESKAPE pathogens. Resistance in Gram-positive isolates was mainly found to be against benzylpenicillin, azithromycin, ampicillin, and trimethoprim/sulfamethoxazole. Carbapenem- and multidrug-resistant isolates of A. baumannii and Klebsiella pneumonia were found on the ICU surfaces. Genome sequencing revealed that the carbapenem-resistant A. baumannii isolate from ICU environment was linked with those of clinical origin. The isolate Ab133-HEnv was classified as a novel sequence type (ST2528) based on a new allele of Oxf_gdhB-286. Three beta-lactam-antibiotic-resistance genes, blaADC-25, blaOXA-23, and blaOXA-66, were found in most of the analyzed genomes. Collectively, the results of this study highlight the spread of antimicrobial-resistant nosocomial pathogens in a health care facility in Saudi Arabia.

12.
Sci Rep ; 12(1): 21723, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522420

RESUMO

Hypericum perforatum and Echinacea are reported to have antiviral activities against several viral infections. In this study, H. perforatum (St. John's Wort) and Echinacea were tested in vitro using Vero E6 cells for their anti-viral effects against the newly identified Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) through its infectious cycle from 0 to 48 h post infection. The hypericin of H. perforatum and the different parts (roots, seeds, aerial) of two types of Echinacea species (Echinacea purpurea and Echinacea angustifolia) were tested for their anti-viral activities to measure the inhibition of viral load using quantitative real-time polymerase chain reaction (qRT-PCR) on cell culture assay. Interestingly, the H. perforatum-Echinacea mixture (1:1 ratio) of H. perforatum and Echinacea was tested as well on SARS-CoV-2 and showed crucial anti-viral activity competing H. perforatum then Echinacea effects as anti-viral treatment. Therefore, the results H. perforatum and Echinacea species, applied in this study showed significant anti-viral and virucidal effects in the following order of potency: H. perforatum, H. perforatum-Echinacea mixture, and Echinacea on SARS-CoV-2 infectious cycle. Additionally, molecular simulation analysis of the compounds with essential proteins (Mpro and RdRp) of the SARS-CoV-2 revealed the most potent bioactive compounds such as Echinacin, Echinacoside, Cyanin, Cyanidin 3-(6''-alonylglucoside, Quercetin-3-O-glucuronide, Proanthocyanidins, Rutin, Kaempferol-3-O-rutinoside, and Quercetin-3-O-xyloside. Thus, based on the outcome of this study, it is demanding the setup of clinical trial with specific therapeutic protocol.


Assuntos
Antineoplásicos , COVID-19 , Echinacea , Hypericum , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Quercetina/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
13.
Sci Rep ; 11(1): 19576, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599215

RESUMO

There are a few biological functions or phenomenon which are universally associated with majority of the cancers and hypoxia and immune systems are among them. Hypoxia often occurs in most of the cancers which helps the cells in adapting different responses with respect to the normal cells which may be the activation of signaling pathways which regulate proliferation, angiogenesis, and cell death. Similar to it, immune signaling pathways are known to play critical roles in cancers. Moreover, there are a number of genes which are known to be associated with these hypoxia and immune system and appear to direct affect the tumor growth and propagations. Cancer is among the leading cause of death and oral cancer is the tenth-leading cause due to cancer death. In this study, we were mainly interested to understand the impact of alteration in the expression of hypoxia and immune system-related genes and their contribution to head and neck squamous cell carcinoma. Moreover, we have collected the genes associated with hypoxia and immune system from the literatures. In this work, we have performed meta-analysis of the gene and microRNA expression and mutational datasets obtained from public database for different grades of tumor in case of oral cancer. Based on our results, we conclude that the critical pathways which dominantly enriched are associated with metabolism, cell cycle, immune system and based on the survival analysis of the hypoxic genes, we observe that the potential genes associated with head and neck squamous cell carcinoma and its progression are STC2, PGK1, P4HA1, HK1, SPIB, ANXA5, SERPINE1, HGF, PFKM, TGFB1, L1CAM, ELK4, EHF, and CDK2.


Assuntos
Suscetibilidade a Doenças , Hipóxia/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Neoplasias Bucais/etiologia , Neoplasias Bucais/metabolismo , Transdução de Sinais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/genética , MicroRNAs , Neoplasias Bucais/patologia , Mutação , Interferência de RNA , RNA Mensageiro
14.
J Infect Public Health ; 14(2): 238-243, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33493920

RESUMO

BACKGROUND: The MERS-CoV was identified for the first time from Jeddah, Saudi Arabia in 2012 from a hospitalized patient. This virus has now been spread to 27 countries with a total of 858 deaths and 2494 confirmed cases and has become a serious concern for the human population. Camels are well known for the transmission of the virus to the human population. METHODS: In this report, we have discussed the designing, prediction, and evaluation of potential siRNAs against the orf1ab gene of MERS-CoV. The online software was used to predict and design the siRNAs and finally, total twenty-one siRNA were filtered out from four hundred and sixty-two sIRNAs as per their scoring and specificity criteria. We have used only ten siRNAs to evaluate their cytotoxicity and efficacy by reverse transfection approach in HEK-293-T cell lines. RESULTS: Based on the results and data generated; no cytotoxicity was observed for any siRNAs at various concentrations in HEK-293-T cells. The ct value of real-time PCR showed the inhibition of viral replication in siRNA-1, 2, 4, 6, and 9. The data generated provided the preliminary information and encouraged us to evaluate the remaining siRNAs separately as well as in combination to analyses the replication of MERS-CoV inhibition in other cell lines. CONCLUSION: Based on the results obtained; it is concluded that the prediction of siRNAs using online software resulted in the filtration of potential siRNAs with high accuracy and strength. This technology can be used to design and develop antiviral therapy not only for MERS-CoV but also against other viruses.


Assuntos
Genes Virais , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Interferente Pequeno/genética , Animais , Camelus , Infecções por Coronavirus , Células HEK293 , Humanos , Software
15.
Saudi J Biol Sci ; 28(2): 1348-1355, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33519276

RESUMO

The Middle East Respiratory Syndrome Coronavirus is well known to cause respiratory syndrome and this virus was identified and isolated for the first time from Jeddah, Saudi Arabia in 2012 from infected patient. In this report, we have conducted the in-silico prediction, designing and evaluation of siRNAs targeting Middle East Respiratory Syndrome Coronavirus orf1ab gene to inhibit the virus replication. By using bioinformatics software, total twenty-one functional, off-target reduced siRNA were selected from four hundred and sixty-two siRNAs based on their greater potency and specificity. We have evaluated only seven siRNAs to analyze their performance and efficacy as antivirals by reverse transfection approach in Vero cells. There was no cytotoxicity of siRNAs at various concentrations was observed in Vero cells. Based on the real-time PCR results, better inhibition of viral replication was observed in the siRNA-1 and 4 as compared to other siRNAs. The results generated from this work provided suitable information about the efficacy of siRNAs which encouraged us to further evaluate the remaining siRNAs to determine their inhibitory effect on the virus replication. We concluded that the insilico prediction and designing resulted in the screening of potential siRNAs with better efficiency, and strength. This can be used to develop oligonucleotide-based antiviral therapeutics against MERS-CoV in the near future.

16.
J Infect Public Health ; 14(6): 803-810, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34044250

RESUMO

BACKGROUND: Dengue virus causes the dengue fever as well as hemorrhagic fever in tropical and sub-tropical countries. It is now endemic in most parts of the South East Asia. Full-genome information of dengue virus 3 is not available from Yemen. METHODS: In this study, the dengue virus 3 was detected by diagnostic tools like serology and RT-PCR in the samples isolated from a patient in Yemen. The full-genome was sequenced, and the identity, phylogenetic relationship and recombination analysis was performed by using BioEdit, MEGA X and RDP4 softwares. RESULTS: The full-genome of the Yemen isolate was found to be 10,643 nt long with 3390 amino acids. The Yemen dengue virus 3 isolate showed the sequence similarity (98.5-92.4%) with dengue virus 3 isolates from China, Pakistan, India and Bangladesh respectively. The significant non-synonymous substitutions of amino acid in Yemen isolate were observed with selected isolates. The phylogenetic tree of Yemen isolate formed a unique clade within genotype III and sub-clade into lineage III. The Dengue virus isolate from Jeddah formed separated cluster with lineage IV. CONCLUSIONS: This reveals the unique genetic variability among DENV-3 serotypes from Jeddah and earlier reported isolates from other regions.


Assuntos
Vírus da Dengue , Dengue , Bangladesh , China , Dengue/epidemiologia , Vírus da Dengue/genética , Genótipo , Humanos , Índia , Paquistão , Filogenia , RNA Viral/genética , Sorogrupo , Iêmen/epidemiologia
17.
Clin Exp Vaccine Res ; 9(2): 164-168, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32864373

RESUMO

A novel coronavirus was emerged in December 2019 from Wuhan city, China and has now become a global threat to human health. Currently, the coronavirus disease 2019 (COVID-19) has spread to more than 34 countries with 2,445 deaths and 78,811 confirmed cases. Currently, there is no vaccine available against COVID-19. The traditional vaccines development requires more time and high cost and due to this, the disease outbreaks becomes more challenging. Now a days, plants have become more attractive platform for edible vaccine production than the other system. The development of an edible vaccine in a selected plant system has many significant advantages such as; easy and efficient oral delivery, low cost with higher scale production, avoidance of any trained medical personnel for delivery, lack of any pathogenic infection, multicomponent expression in a single plant, and so forth. In this manuscript, the concept, development, and importance of an edible vaccine have been discussed. By using this plant-based platform, an edible vaccines can be produced in many crops like banana, cucumber, carrot, lettuce, and tomato against various diseases. Due to increasing cases globally with COVID-19, there is an urgent requirement to develop an ideal vaccine and antiviral therapy against this virus to control the disease worldwide.

18.
Saudi J Biol Sci ; 27(11): 3060-3064, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33100865

RESUMO

Chilli (Capsicum annum L.) is well known as 'wonder spice'. This is a very valuable cash crop grown as a vegetable globally. Chilli leaf curl disease is a major threat and global concern for the cultivation of Chilli by farmers and growers. In this work, the molecular diagnosis, genetic diversity, phylogenetic relationship, and begomovirus association with Chilli leaf curl disease have been discussed. The infected leaves were randomly harvested from the Chilli field, at Jeddah, Saudi Arabia. A group of begomovirus vector, whiteflies were also observed on the Chilli crop and infected weeds growing in the neighboring field. The begomovirus was confirmed by coat protein gene specific primer, dot blot hybridization, sequencing and sequence analysis. The full coat protein gene was found to have 774 nucleotides. The nucleotide sequences analysis shared the highest identity with Tomato yellow leaf curl virus reported earlier infecting tomato from Saudi Arabia, and the lowest identity was observed with Tomato yellow leaf curl virus Oman isolate. The overall sequence identity ranged from more than ninety percent among the analyzed sequences. The phylogenetic relationship analysis formed the major three clusters and showed the closed clustering with Tomato yellow leaf curl virus isolates. The natural spread of the Tomato yellow leaf curl virus on the Chilli crop from other crops poses an important and serious threat to Chili cultivation in the Kingdom of Saudi Arabia. Based on the literature review and current evidence, this is the first report of leaf curl disease of Chilli from Saudi Arabia.

19.
Saudi J Biol Sci ; 27(1): 222-228, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31889840

RESUMO

Tomato is known as a highly valuable crop and grown worldwide for various uses. The cultivation and tomato production severely affected globally by several diseases caused by various pathogens. Begomoviruses causes yellow mosaic and leaf curl disease of tomato in the tropical, subtropical, temperate, and semi-arid regions. In Saudi Arabia, the tomato production adversely affected by disease caused by begomoviruses known as TYLCV and ToLCSDV. In this study, the pathogen was identified by Polymerase Chain Reaction using virus-specific primers and transmitted by whiteflies to healthy tomato seedlings. In a field survey, the tomato plants were exhibiting symptoms like viral infection. The infected leaf was randomly collected from various fields of tomato growing areas like Jeddah, Makkah, Tabuk, and Hail. The full-length viral genome was amplified by Rolling Circle Amplification technology (RCA) while betasatellites were amplified by PCR using universal betasatellites primers. The full-length viral genome (∼2.7 kb) and betasatellites (∼1.4 kb) were cloned and sequenced bi-directionally. The generated sequences were assembled and analyzed to find out the genetic variability by using bioinformatics tools and the genetic variability and phylogenetic relationships with selected begomoviruses were analyzed. The sequences showed the highest identity with an isolate of ToLCSDV and TYLCV. The nucleotide similarity and phylogenetic relationship showed the closest cluster with ToLCSDV and TYLCV. The data generated in this study elucidate that the causal organism is a variant of either TYLCV or ToLCSDV. The provided information from this study will be highly valuable for researchers and vegetable growers not only in Saudi Arabia but also in Arabian Peninsula.

20.
Vaccines (Basel) ; 8(4)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139631

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 and causes severe and often fatal acute respiratory illness in humans. No approved prophylactic and therapeutic interventions are currently available. In this study, we have developed egg yolk antibodies (immunoglobulin Y (IgY)) specific for MERS-CoV spike protein (S1) in order to evaluate their neutralizing efficiency against MERS-CoV infection. S1-specific immunoglobulins were produced by injecting chickens with purified recombinant S1 protein of MERS-CoV at a high titer (5.7 mg/mL egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated that the IgY antibody specifically bound to the MERS-CoV S1 protein. Anti-S1 antibodies were also able to recognize MERS-COV inside cells, as demonstrated by an immunofluorescence assay. Plaque reduction and microneutralization assays showed the neutralization of MERS-COV in Vero cells by anti-S1 IgY antibodies and non-significantly reduced virus titers in the lungs of MERS-CoV-infected mice during early infection, with a nonsignificant decrease in weight loss. However, a statistically significant (p = 0.0196) quantitative reduction in viral antigen expression and marked reduction in inflammation were observed in lung tissue. Collectively, our data suggest that the anti-MERS-CoV S1 IgY could serve as a potential candidate for the passive treatment of MERS-CoV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA