Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687605

RESUMO

Mutations in UBA1, which are disease-defining for VEXAS syndrome, have been reported in patients diagnosed with myelodysplastic syndromes (MDS). Here, we define the prevalence and clinical associations of UBA1 mutations in a representative cohort of patients with MDS. Digital droplet PCR profiling of a selected cohort of 375 male patients lacking MDS disease-defining mutations or established WHO disease classification identified 28 patients (7%) with UBA1 p.M41T/V/L mutations. Using targeted sequencing of UBA1 in a representative MDS cohort (n=2,027), we identified an additional 27 variants in 26 patients (1%), which we classified as likely/pathogenic (n=12) and unknown significance (n=15). Among the total 40 patients with likely/pathogenic variants (2%), all were male and 63% were classified by WHO2016 as MDS-MLD/SLD. Patients had a median of one additional myeloid gene mutation, often in TET2 (n=12), DNMT3A (n=10), ASXL1 (n=3), or SF3B1 (n=3). Retrospective clinical review where possible showed that 83% (28/34) UBA1-mutant cases had VEXAS-associated diagnoses or inflammatory clinical presentation. The prevalence of UBA1-mutations in MDS patients argues for systematic screening for UBA1 in the management of MDS.

2.
Blood ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958467

RESUMO

Myelodysplastic syndromes/neoplasms (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. While genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3,233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations (CNAs), and copy-neutral loss of heterozygosity (cnLOH) were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91, 43, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and LOH at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not-otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow blast percentage across groups ranged from 1.5 to 10%, and the median overall survival from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of bone marrow blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and may inform future classification schemas and translational therapeutic research.

3.
Br J Haematol ; 204(5): 1838-1843, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471524

RESUMO

Real-world data have revealed that a substantial portion of patients with myelodysplastic syndromes (MDS) does not respond to epigenetic therapy with hypomethylating agents (HMAs). The cellular and molecular reasons for this resistance to the demethylating agent and biomarkers that would be able to predict the treatment refractoriness are largely unknown. In this study, we shed light on this enigma by characterizing the epigenomic profiles of patients with MDS treated with azacitidine. Our approach provides a comprehensive view of the evolving DNA methylation architecture of the disease and holds great potential for advancing our understanding of MDS treatment responses to HMAs.


Assuntos
Azacitidina , Metilação de DNA , Síndromes Mielodisplásicas , Humanos , Azacitidina/uso terapêutico , Azacitidina/farmacologia , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Estudos Retrospectivos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Antimetabólitos Antineoplásicos/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Idoso de 80 Anos ou mais , Epigênese Genética/efeitos dos fármacos , Resultado do Tratamento
4.
Blood ; 139(15): 2273-2284, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35167654

RESUMO

Cytogenetics has long represented a critical component in the clinical evaluation of hematologic malignancies. Chromosome banding studies provide a simultaneous snapshot of genome-wide copy number and structural variation, which have been shown to drive tumorigenesis, define diseases, and guide treatment. Technological innovations in sequencing have ushered in our present-day clinical genomics era. With recent publications highlighting novel sequencing technologies as alternatives to conventional cytogenetic approaches, we, an international consortium of laboratory geneticists, pathologists, and oncologists, describe herein the advantages and limitations of both conventional chromosome banding and novel sequencing technologies and share our considerations on crucial next steps to implement these novel technologies in the global clinical setting for a more accurate cytogenetic evaluation, which may provide improved diagnosis and treatment management. Considering the clinical, logistic, technical, and financial implications, we provide points to consider for the global evolution of cytogenetic testing.


Assuntos
Neoplasias Hematológicas , Aberrações Cromossômicas , Análise Citogenética , Citogenética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Humanos
5.
Blood ; 140(1): 38-44, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421218

RESUMO

CD19-directed immunotherapies have revolutionized the treatment of advanced B-cell acute lymphoblastic leukemia (B-ALL). Despite initial impressive rates of complete remission (CR) many patients ultimately relapse. Patients with B-ALL successfully treated with CD19-directed T cells eventually relapse, which, coupled with the early onset of CD22 expression during B-cell development, suggests that preexisting CD34+CD22+CD19- (pre)-leukemic cells represent an "early progenitor origin-related" mechanism underlying phenotypic escape to CD19-directed immunotherapies. We demonstrate that CD22 expression precedes CD19 expression during B-cell development. CD34+CD19-CD22+ cells are found in diagnostic and relapsed bone marrow samples of ∼70% of patients with B-ALL, and their frequency increases twofold in patients with B-ALL in CR after CD19 CAR T-cell therapy. The median of CD34+CD19-CD22+ cells before treatment was threefold higher in patients in whom B-ALL relapsed after CD19-directed immunotherapy (median follow-up, 24 months). Fluorescence in situ hybridization analysis in flow-sorted cell populations and xenograft modeling revealed that CD34+CD19-CD22+ cells harbor the genetic abnormalities present at diagnosis and initiate leukemogenesis in vivo. Our data suggest that preleukemic CD34+CD19-CD22+ progenitors underlie phenotypic escape after CD19-directed immunotherapies and reinforce ongoing clinical studies aimed at CD19/CD22 dual targeting as a strategy for reducing CD19- relapses. The implementation of CD34/CD19/CD22 immunophenotyping in clinical laboratories for initial diagnosis and subsequent monitoring of patients with B-ALL during CD19-targeted therapy is encouraged.


Assuntos
Antígenos CD19 , Linfoma de Burkitt , Antígenos CD34 , Linfócitos B , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Recidiva , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
6.
Blood ; 140(21): 2228-2247, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36130297

RESUMO

Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Neoplasias , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Genômica , Neoplasias/genética , Neoplasias Hematológicas/genética , Tomada de Decisão Clínica
7.
Am J Hematol ; 99(4): 642-661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164980

RESUMO

Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.


Assuntos
Neoplasias Hematológicas , Humanos , Hibridização in Situ Fluorescente , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Cariotipagem , Mapeamento Cromossômico
8.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396682

RESUMO

Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.


Assuntos
Adenina/análogos & derivados , Curcumina , Leucemia Linfocítica Crônica de Células B , Piperidinas , Vidarabina/análogos & derivados , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Tetraploidia
9.
Blood ; 138(21): 2093-2105, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34125889

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes common in persons aged ≥80 years, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 persons aged ≥80 years and investigated the relationships between CHIP and associated pathologies. Mutations were observed in one-third of persons aged ≥80 years and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, and ASXL1 with additional genetic lesions), and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1, or JAK2 were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was common in persons aged ≥80 years, with the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of subjects aged ≥80 years with cytopenia had presumptive evidence of myeloid neoplasm. In summary, specific mutational patterns define different risk of developing myeloid neoplasms vs inflammatory-associated diseases in persons aged ≥80 years. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.


Assuntos
Hematopoiese Clonal , Mutação , Fatores Etários , Idoso de 80 Anos ou mais , Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Doença das Coronárias/etiologia , Doença das Coronárias/genética , Feminino , Humanos , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Masculino , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/genética
10.
Blood ; 136(16): 1851-1862, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32573691

RESUMO

More than 90% of patients with myelodysplastic/myeloproliferative neoplasms (MDSs/MPNs) harbor somatic mutations in myeloid-related genes, but still, current diagnostic criteria do not include molecular data. We performed genome-wide sequencing techniques to characterize the mutational landscape of a large and clinically well-characterized cohort including 367 adults with MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = 119), atypical chronic myeloid leukemia (aCML; n = 71), MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T; n = 71), and MDS/MPN unclassifiable (MDS/MPN-U; n = 106). A total of 30 genes were recurrently mutated in ≥3% of the cohort. Distribution of recurrently mutated genes and clonal architecture differed among MDS/MPN subtypes. Statistical analysis revealed significant correlations between recurrently mutated genes, as well as genotype-phenotype associations. We identified specific gene combinations that were associated with distinct MDS/MPN subtypes and that were mutually exclusive with most of the other MDSs/MPNs (eg, TET2-SRSF2 in CMML, ASXL1-SETBP1 in aCML, and SF3B1-JAK2 in MDS/MPN-RS-T). Patients with MDS/MPN-U were the most heterogeneous and displayed different molecular profiles that mimicked the ones observed in other MDS/MPN subtypes and that had an impact on the outcome of the patients. Specific gene mutations also had an impact on the outcome of the different MDS/MPN subtypes, which may be relevant for clinical decision-making. Overall, the results of this study help to elucidate the heterogeneity found in these neoplasms, which can be of use in the clinical setting of MDS/MPN.


Assuntos
Evolução Clonal , Hematopoiese Clonal , Suscetibilidade a Doenças , Doenças Mieloproliferativas-Mielodisplásicas/etiologia , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores , Medula Óssea , Aberrações Cromossômicas , Evolução Clonal/genética , Hematopoiese Clonal/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Mieloproliferativas-Mielodisplásicas/diagnóstico , Doenças Mieloproliferativas-Mielodisplásicas/metabolismo , Doenças Mieloproliferativas-Mielodisplásicas/mortalidade , Fenótipo , Prognóstico , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
11.
Br J Haematol ; 188(5): 605-622, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31621063

RESUMO

The landscape of medical sequencing has rapidly changed with the evolution of next generation sequencing (NGS). These technologies have contributed to the molecular characterization of the myelodysplastic syndromes (MDS) and chronic myelomonocytic leukaemia (CMML), through the identification of recurrent gene mutations, which are present in >80% of patients. These mutations contribute to a better classification and risk stratification of the patients. Currently, clinical laboratories include NGS genomic analyses in their routine clinical practice, in an effort to personalize the diagnosis, prognosis and treatment of MDS and CMML. NGS technologies have reduced the cost of large-scale sequencing, but there are additional challenges involving the clinical validation of these technologies, as continuous advances are constantly being made. In this context, it is of major importance to standardize the generation, analysis, clinical interpretation and reporting of NGS data. To that end, the Spanish MDS Group (GESMD) has expanded the present set of guidelines, aiming to establish common quality standards for the adequate implementation of NGS and clinical interpretation of the results, hoping that this effort will ultimately contribute to the benefit of patients with myeloid malignancies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Mielomonocítica Crônica/genética , Síndromes Mielodisplásicas/genética , Guias como Assunto , Humanos , Espanha
12.
Genes Chromosomes Cancer ; 58(10): 689-697, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30994215

RESUMO

The karyotype is a strong independent prognostic factor in myelodysplastic syndromes (MDS). Since the implementation of the new comprehensive cytogenetic scoring system for MDS, chromosome 7 anomalies are no longer generally assigned to poor risk features but are thoroughly separated. However, der(1;7)(q10;p10), hereinafter der(1;7), is merged into the group labeled "any other single" and belongs to the intermediate risk group, just by definition due to lack of adequate clinical data. The aim of our international collaborative was to clarify the "real" prognostic impact of der(1;7) on a homogenous and well-documented data base. We performed detailed analysis of 63 MDS patients with isolated der(1;7) constituting the largest cohort hitherto reported. Furthermore, clinical data are compared with those of patients with isolated del(7q) and isolated monosomy 7. Median overall survival (OS) of patients with der(1;7) is 26 months (hazard ratio (HR) 0.91 for del(7q) vs der(1;7) and 2.53 for monosomy 7 vs der(1;7)). The der(1;7) is associated with profound thrombocytopenia most probably causing the reduced OS which is in striking contrast to the low risk for AML transformation (HR 3.89 for del(7q) vs der(1;7) and 5.88 for monosomy 7 vs der(1;7)). Molecular karyotyping indicates that der(1;7) is generated in a single step during mitosis and that a chromosomal imbalance rather than a single disrupted gene accounts for malignancy. Thus, the current cytogenetic scoring system assigning isolated der(1;7) to the intermediate risk group is now confirmed by a sufficient data set.


Assuntos
Biomarcadores Tumorais/genética , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 7/genética , Síndromes Mielodisplásicas/genética , Cariótipo Anormal , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Análise de Sobrevida
13.
Genes Chromosomes Cancer ; 58(11): 815-819, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31340073

RESUMO

Minimal residual disease (MRD) assessment is an essential tool in contemporary acute lymphoblastic leukemia (ALL) protocols, being used for therapeutic decisions such as hematopoietic stem cell transplantation in high-risk patients. However, a significant proportion of adult ALL patients with negative MRD still relapse suggesting that other factors (ie, molecular alterations) must be considered in order to identify those patients with high risk of disease progression. We have identified partial IKZF1 gene deletions and CDKN2A/B deletions as markers of disease recurrence and poor survival in a series of uniformly treated adolescent and adult Philadelphia chromosome-negative B-cell progenitor ALL patients treated according to the Programa Español de Tratamientos en Hematología protocols. Importantly, CDKN2A/B deletions showed independent significance of MRD at the end of induction, which points out the need for treatment intensification in these patients despite being MRD-negative after induction therapy.


Assuntos
Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Adolescente , Adulto , Biomarcadores Tumorais , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Progressão da Doença , Feminino , Deleção de Genes , Humanos , Fator de Transcrição Ikaros/metabolismo , Masculino , Neoplasia Residual , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Prognóstico , Recidiva
14.
Br J Haematol ; 186(2): 263-268, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916384

RESUMO

The prognostic significance of low-hypodiploidy has not been extensively evaluated in minimal residual disease (MRD)-oriented protocols for adult acute lymphoblastic leukaemia (ALL). We analysed the outcome of hypodiploid adult ALL patients treated within Programa Español de Tratamientos en Hematología (PETHEMA) protocols. The 5-year cumulative incidence of relapse (CIR) of low-hypodiploid B-cell precursor (BCP)-ALL was significantly higher than that of high-hypodiploids (52% vs. 12%, P = 0.013). Low-hypodiploid BCP-ALL patients aged ≤35 years showed superior survival (71% vs. 21%, P = 0.026) and lower 5-year CIR (17% vs. 66%, P = 0.090) than low-hypodiploids aged >35 years. Older adults and elderly low-hypodiploid BCP-ALL patients show dismal prognosis although achieving an end-induction good MRD response.


Assuntos
Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adolescente , Adulto , Fatores Etários , Idoso , Intervalo Livre de Doença , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Estudos Retrospectivos , Taxa de Sobrevida
15.
Genes Chromosomes Cancer ; 57(11): 547-556, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30248204

RESUMO

The study analyzes the clonal architecture and the abnormalities involved in a series of 191 patients with myelodysplastic syndromes (MDS) and 2-3 clonal abnormalities. All patients were extracted from an international database. The patients were classified into six clonal subtypes (2A-3C) based on the number of abnormalities and the presentation of unrelated clones (UC) and/or a clonal evolution. UC were detected in 23/191 patients (12%). The composition of UC showed great variability. The only recurrent combination of abnormalities was del(5q) and + 8 in 8 of 23 patients (35%). In patients with clonal evolution, the clone size of the primary and secondary clone varied: Patients with -7 and + 8 in the primary clone showed a larger primary and a smaller secondary clone (-7: median 74% vs 10%; +8 73% vs 18%) while patients with del(5q) in the primary clone showed a smaller primary and a larger secondary clone (33% vs 61%). Univariate and multivariate analyses showed no significant differences regarding overall or AML-free survival between the clonal subtypes. Only the subtype 3C (3 abnormalities and clonal evolution) was an independent risk factor for developing AML (Hazard Ratio 5.5 as compared to subtype 2A, P < .05). Finally, our study confirms that the number of abnormalities clearly defines a significant risk factor for overall- as well as AML-free survival. Importantly, in patients with more than one clone, the calculation of the number of abnormalities in the entire sample instead of the number of abnormalities per clone allows a higher prognostic accuracy.


Assuntos
Aberrações Cromossômicas , Síndromes Mielodisplásicas , Idoso , Análise Citogenética , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/epidemiologia , Síndromes Mielodisplásicas/genética , Prognóstico , Estudos Retrospectivos
17.
Br J Haematol ; 182(3): 373-383, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797327

RESUMO

Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34+ bone marrow selected cells and in an independent cohort of 74 CMML patients, mutationally contextualized by targeted sequencing, and assessed their transcriptional behavior in 70 myelodysplastic syndrome, 66 acute myeloid leukaemia and 25 chronic myeloid leukaemia cases. We found BAP1 and PARP1 down-regulation to be specific to CMML compared with other related disorders. Chromatin-regulator mutated cases showed decreased BAP1 dosage. We validated a significant over-expression of the double strand break-fidelity genes CDKN1A and ERCC1, independent of promoter methylation and associated with chemorefractoriness. In addition, patients bearing mutations in the splicing component SRSF2 displayed numerous aberrant splicing events in DNA repair genes, with a quantitative predominance in the single strand break pathway. Our results highlight potential targets in this disease, which currently has few therapeutic options.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Leucemia Mielomonocítica Crônica/genética , Idoso , Medula Óssea/patologia , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Poli(ADP-Ribose) Polimerase-1/genética , Fatores de Processamento de Serina-Arginina/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
18.
Blood ; 128(7): 902-10, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27335276

RESUMO

In myelodysplastic syndromes (MDSs), the evolution of risk for disease progression or death has not been systematically investigated despite being crucial for correct interpretation of prognostic risk scores. In a multicenter retrospective study, we described changes in risk over time, the consequences for basal prognostic scores, and their potential clinical implications. Major MDS prognostic risk scoring systems and their constituent individual predictors were analyzed in 7212 primary untreated MDS patients from the International Working Group for Prognosis in MDS database. Changes in risk of mortality and of leukemic transformation over time from diagnosis were described. Hazards regarding mortality and acute myeloid leukemia transformation diminished over time from diagnosis in higher-risk MDS patients, whereas they remained stable in lower-risk patients. After approximately 3.5 years, hazards in the separate risk groups became similar and were essentially equivalent after 5 years. This fact led to loss of prognostic power of different scoring systems considered, which was more pronounced for survival. Inclusion of age resulted in increased initial prognostic power for survival and less attenuation in hazards. If needed for practicability in clinical management, the differing development of risks suggested a reasonable division into lower- and higher-risk MDS based on the IPSS-R at a cutoff of 3.5 points. Our data regarding time-dependent performance of prognostic scores reflect the disparate change of risks in MDS subpopulations. Lower-risk patients at diagnosis remain lower risk whereas initially high-risk patients demonstrate decreasing risk over time. This change of risk should be considered in clinical decision making.


Assuntos
Transformação Celular Neoplásica/patologia , Síndromes Mielodisplásicas/mortalidade , Idoso , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Fatores de Risco , Fatores de Tempo , Organização Mundial da Saúde
19.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347758

RESUMO

Homologous recombination (HR) is a DNA repair pathway that is deficient in 50% of high-grade serous ovarian carcinomas (HGSOC). Deficient HR (DHR) constitutes a therapeutic opportunity for these patients, thanks to poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi; olaparib, niraparib, and rucaparib are already commercialized). Although initially, PARPi were developed for patients with BRCA1/2 mutations, robust clinical data have shown their benefit in a broader population without DHR. This breakthrough in daily practice has raised several questions that necessitate further research: How can populations that will most benefit from PARPi be selected? At which stage of ovarian cancer should PARPi be used? Which strategies are reasonable to overcome PARPi resistance? In this paper, we present a summary of the literature and discuss the present clinical research involving PARPi (after reviewing ClinicalTrials.gov) from a translational perspective. Research into the functional biomarkers of DHR and clinical trials testing PARPi benefits as first-line setting or rechallenge are currently ongoing. Additionally, in the clinical setting, only secondary restoring mutations of BRCA1/2 have been identified as events inducing resistance to PARPi. The clinical frequency of this and other mechanisms that have been described in preclinics is unknown. It is of great importance to study mechanisms of resistance to PARPi to guide the clinical development of drug combinations.


Assuntos
Recombinação Homóloga , Neoplasias Ovarianas/genética , Pesquisa Translacional Biomédica , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
20.
Genes Chromosomes Cancer ; 56(3): 243-252, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27750403

RESUMO

Leukemia cell lines have been widely used in the hematology field to unravel mechanistic insights and to test new therapeutic strategies. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of diseases that are characterized by ineffective hematopoiesis and frequent progress to acute myeloid leukemia (AML). A few cell lines have been established from MDS patients after progression to AML but their characterization is incomplete. Here we provide a detailed description of the immunophenotypic profile of the MDS-derived cell lines SKK-1, SKM-1, F-36P; and MOLM-13. Specifically, we analyzed a comprehensive panel of markers that are currently applied in the diagnostic routine for myeloid disorders. To provide high-resolution genetic data comprising copy number alterations and losses of heterozygosity we performed whole genome single nucleotide polymorphism-based arrays and included the cell line OHN-GM that harbors the frequent chromosome arm 5q deletion. Furthermore, we assessed the mutational status of 83 disease-relevant genes. Our results provide a resource to the MDS and AML field that allows researchers to choose the best-matching cell line for their functional studies. © 2016 Wiley Periodicals, Inc.


Assuntos
Biomarcadores Tumorais/genética , Aberrações Cromossômicas , Análise Citogenética/métodos , Imunofenotipagem/métodos , Leucemia Mieloide Aguda/genética , Mutação/genética , Síndromes Mielodisplásicas/genética , Progressão da Doença , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA