Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Cell Physiol ; 235(2): 1155-1164, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31250436

RESUMO

Blood transfusion or blood products, such as plasma, have a long history in improving health, but today, platelet-rich plasma (PRP) is used in various medical areas such as surgery, orthopedics, and rheumatology in many ways. Considering the high efficiency of tissue engineering in repairing bone defects, in this study, we investigated the combined effect of nanofibrous scaffolds in combination with PRP on the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs). Electrospinning was used for fabricating nanofibrous scaffolds by polyvinylidene fluoride/collagen (PVDF/col) with and without PRP. After scaffold characterization, the osteoinductivity of the fabricated scaffolds was studied by culturing human iPSCs under osteogenic medium. The results showed that PRP has a considerable positive effect on the biocompatibility of the PVDF/col nanofibrous scaffold when examined by protein adsorption, cell attachment, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. In addition, the results obtained from alkaline phosphatase activity and calcium content assays demonstrated that nanofibers have higher osteoinductivity while grown on PRP-incorporated PVDF/col nanofibers. These results were also confirmed while the osteogenic differentiation of the iPSCs was more investigated by evaluating the most important bone-related genes expression level. According to the results, it can be concluded that PVDF/col/PRP has much more osteoinductivity while compared with the PVDF/col, and it can be introduced as a promising bone bio-implant for use in bone tissue engineering applications.


Assuntos
Técnicas de Cultura de Células/instrumentação , Colágeno/química , Células-Tronco Pluripotentes Induzidas/fisiologia , Nanofibras , Plasma Rico em Plaquetas/química , Polivinil/química , Adesão Celular , Humanos , Microscopia de Força Atômica
2.
J Cell Physiol ; 235(5): 4239-4246, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31613005

RESUMO

Diabetes is one of the most common diseases in the world that is chronic, progressive, and costly, and causes many complications. Common drug therapies are not able to cure it, and pancreas transplantation is not responsive to the high number of patients. The production of the insulin producing cells (IPCs) from the stem cells in the laboratory and their transplantation to the patient's body is one of the most promising new approaches. In this study, the differentiation potential of the induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) into IPCs was compared to each other while cultured on poly(lactic-co-glycolic) acid (PLGA)/polyethylene glycol (PEG) nanofibrous scaffold as a 3D substrate and tissue culture polystyrene (TCPS) as a 2D substrate. Although the expression level of the insulin, Glut2 and pdx-1 genes in stem cells cultured on 3D substrate was significantly higher than the stem cells cultured on 2D substrate, the highest expression level of these genes was detected in the iPSCs cultured on PLGA-PEG. Insulin and C-peptide secretions from differentiated cells were also investigated and the results showed that secretions in cultured iPSCs on the PLGA-PEG were significantly higher than cultured iPSCs on the TCPS and cultured MSCs on both PLGA-PEG and TCPS. In addition, insulin protein was also expressed in the cultured iPSCs on the PLGA-PEG significantly higher than cultured MSCs on the PLGA-PEG. It can be concluded that differentiation potential of iPSCs into IPCs is significantly higher than human MSCs at both 2D and 3D culture systems.


Assuntos
Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Insulina/metabolismo , Células-Tronco Mesenquimais/fisiologia , Peptídeo C/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
3.
J Cell Biochem ; 121(2): 1169-1181, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31464024

RESUMO

Human-induced pluripotent stem cells-derived hepatocyte-like cells (hiPSCs-HLCs) holds considerable promise for future clinical personalized therapy of liver disease. However, the low engraftment of these cells in the damaged liver microenvironment is still an obstacle for potential application. In this study, we explored the effectiveness of decellularized amniotic membrane (dAM) matrices for culturing of iPSCs and promoting their differentiation into HLCs. The DNA content assay and histological evaluation indicated that cellular and nuclear residues were efficiently eliminated and the AM extracellular matrix component was maintained during decelluarization. DAM matrices were developed as three-dimensional scaffolds and hiPSCs were seeded into these scaffolds in defined induction media. In dAM scaffolds, hiPSCs-HLCs gradually took a typical shape of hepatocytes (polygonal morphology). HiPSCs-HLCs that were cultured into dAM scaffolds showed a higher level of hepatic markers than those cultured in tissue culture plates (TCPs). Moreover, functional activities in term of albumin and urea synthesis and CYP3A activity were significantly higher in dAM scaffolds than TCPs over the same differentiation period. Thus, based on our results, dAM scaffold might have a considerable potential in liver tissue engineering, because it can improve hepatic differentiation of hiPSCs which exhibited higher level of the hepatic marker and more stable metabolic functions.


Assuntos
Âmnio/citologia , Diferenciação Celular , Matriz Extracelular/química , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Âmnio/metabolismo , Biomarcadores/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Engenharia Tecidual
4.
J Cell Physiol ; 234(7): 10315-10323, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30378123

RESUMO

Considering that the common osteogenic growth factors cannot be transplanted with stem cells to the patients, many studies are underway to find a replacement for these factors. Recently, it has been determined that mesenchymal stem cell (MSC)-derived conditioned medium (CM) contains effective factors in the bone formation process. In the current study, the synergistic effect of adipose-derived MSC's CM, and polycaprolactone (PCL) scaffold was investigated on the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs). After scaffold fabrication by electrospinning and characterization by scanning electron microscopy, iPSCs proliferation in the presence of CM, PCL, and both was evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide. Then, iPSCs osteogenic differentiation was investigated while cultured on tissue culture plate and PCL under CM compared with the osteogenic medium using alizarin red staining, calcium content, alkaline phosphatase activity and gene and protein expression analysis. Proliferation rate of the iPSCs was increased while cultured under CM and its effect was synergistically enhanced by culture on PCL. Evaluation of the osteogenic markers was showed CM alone could induce osteogenic differentiation into the iPSCs and this potential was significantly increased while combined with PCL nanofibrous scaffold. According to the results, it was demonstrated that CM has an osteogenic induction property almost the same of the common osteogenic medium and it can also be used potentially with stem cells when transplant to the patients. CM can also help by prolonging cell survival at the site of the defect as well as accelerating healing process.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Osteogênese/efeitos dos fármacos , Poliésteres/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
J Cell Physiol ; 234(12): 22593-22603, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31102280

RESUMO

Despite the advantages of transplantation of umbilical cord blood's (UCB's) hematopoietic stem cells (uHSCs) for hematologic malignancy treatment, there are two major challenges in using them: (a) Insufficient amount of uHSCs in a UCB unit; (b) a defect in uHSCs homing to bone marrow (BM) due to loose binding of their surface glycan ligands to BM's endothelium selectin receptors. To overcome these limitations, after poly l-lactic acid (PLLA) scaffold establishment and incubation of uHSCs with fucosyltransferase-VI and GDP-fucose, ex vivo expansion of these cells on selectin-coated scaffold was done. The characteristics of the cultured fucosylated and nonfucosylated cells on a two-dimensional culture system, PLLA, and a selectin-coated scaffold were evaluated by flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony-forming unit (CFU) assay, and CXCR4 expression at the messenger RNA and protein levels. According to the findings of this study, optimized attachment to the scaffold in scanning electron microscopy micrograph, maximum count of CFU, and the highest 570 nm absorption were observed in fucosylated cells expanded on selectin-coated scaffolds. Furthermore, real-time polymerase chain reaction showed the highest expression of the CXCR4 gene, and immunocytochemistry data confirmed that the CXCR4 protein was functional in this group compared with the other groups. Considered together, the results showed that selectin-coated scaffold could be a supportive structure for fucosylated uHSC expansion and homing by nanotopography. Fucosylated cells placed on the selectin-coated scaffold serve as a basal surface for cell-cell interaction and more homing potential of uHSCs. Accordingly, this procedure can also be considered as a promising technique for the hematological disorder treatment and tissue engineering applications.


Assuntos
Sangue Fetal/citologia , Células-Tronco Hematopoéticas/fisiologia , Selectinas/química , Alicerces Teciduais/química , Linhagem Celular , Sobrevivência Celular , Fucose/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Nanoestruturas , Propriedades de Superfície , Sais de Tetrazólio , Tiazóis
6.
J Cell Physiol ; 234(8): 13951-13958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30633333

RESUMO

Hard tissue lesion treatment in oral and maxillofacial has been challenging because of tissue complexities. This study aimed to investigate novel biopolymeric construct effects on the osteogenic differentiation potential of the dental pulp stem cells (DPSCs) for introducing a cell copolymer bioimplant. A blended polycaprolactone (PCL)-polyethylene oxide (PEO) was fabricated using electrospinning, simultaneously filled by ß-glycerophosphate (ß-GP). After that biocompatibility and release kinetics of the PCL-PEO+ß-GP was evaluated and compared with PCL-PEO and then the osteogenic differentiation potential of the DPSCs was examined while being cultured on the scaffolds and compared with those cultured on the culture plate. The results demonstrated that scaffolds have not any cytotoxicity and ß-GP can release in a long-term manner. Alkaline phosphatase activity and calcium content were significantly increased in DPSCs while being cultured on the PCL-PEO+ß-GP compared with the other groups. Runt-related transcription factor 2, collagen type-I, osteonectin, and osteocalcin (OSC) genes expression was upregulated in DPSCs cultured on the PCL-PEO+ß-GP and was significantly higher than those cultured on the PCL-PEO. Immunocytochemistry result also confirmed the positive effects of PCL-PEO+ß-GP on the osteogenic differentiation of the DPSCs by presenting a higher OSC protein expression. According to the results, incorporation of the ß-GP in PCL-PEO makes a better construct for osteogenic induction into the stem cells and it could be also considered as a great promising candidate for bone, oral, and maxillofacial tissue engineering applications.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Glicerofosfatos/farmacologia , Nanofibras/química , Osteogênese , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Liberação Controlada de Fármacos , Módulo de Elasticidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Nanofibras/ultraestrutura , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/ultraestrutura , Resistência à Tração
7.
J Cell Physiol ; 234(10): 17854-17862, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30851069

RESUMO

In recent decades, tissue engineering has been the most contributor for introducing 2D and 3D biocompatible osteoinductive scaffolds as bone implants. Polyvinylidene fluoride (PVDF), due to the unique mechanical strength and piezoelectric properties, can be a good choice for making a bone bioimplant. In the present study, PVDF nanofibers and film were fabricated as 3D and 2D scaffolds, and then, osteogenic differentiation potential of the human induced pluripotent stem cells (iPSCs) was investigated when grown on the scaffolds by evaluating the common osteogenic markers in comparison with tissue culture plate. Biocompatibility of the fabricated scaffolds was confirmed qualitatively and quantitatively by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and scanning electron microscopy assays. Human iPSCs cultured on PVDF nanofibers showed a significantly higher alkaline phosphate activity and calcium content compared with the iPSCs cultured on PVDF film. Osteogenic-related genes and proteins were also expressed in the iPSCs seeded on PVDF nanofibers significantly higher than iPSCs seeded on PVDF film, when investigated by real-time reverse transcription polymerase chain reaction and western blot analysis, respectively. According to the results, the PVDF nanofibrous scaffold showed a greater osteoinductive property compared with the PVDF film and due to the material similarity of the scaffolds, it could be concluded that the 3D structure could lead to better bone differentiation. Taken together, the obtained results demonstrated that human iPSC-seeded PVDF nanofibrous scaffold could be considered as a promising candidate for use in bone tissue engineering applications.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Osteogênese/fisiologia , Polivinil/química , Alicerces Teciduais/química , Osso e Ossos/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Nanofibras/química , Engenharia Tecidual/métodos
8.
J Cell Physiol ; 234(7): 11537-11544, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30478907

RESUMO

Cocell polymers can be the best implants for replacing bone defects in patients. The pluripotent stem cells produced from the patient and the nanofibrous polymeric scaffold that can be completely degraded in the body and its produced monomers could be also usable are the best options for this implant. In this study, electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers were fabricated and characterized and then osteogenic differentiation of the human-induced pluripotent stem cells (iPSCs) was investigated while cultured on PHBV scaffold. MTT results showed that cultured iPSCs on PHBV proliferation were increased compared to those cultured on tissue culture polystyrene (TCPS) as the control. Alkaline phosphatase (ALP) activity and calcium content were also significantly increased in iPSCs cultured on PHBV compared to the cultured on TCPS under osteogenic medium. Gene expression evaluation demonstrated that Runx2, collagen type I, ALP, osteonectin, and osteocalcin were upregulated in iPSCs cultured on PHBV scaffold in comparison with those cultured on TCPS for 2 weeks. Western blot analysis have shown that osteocalcin and osteopontin expression as two major osteogenic markers were increased in iPSCs cultured on PHBV scaffold. According to the results, nanofiber-based PHBV has a promising potential to increase osteogenic differentiation of the stem cells and iPSCs-PHBV as a cell-co-polymer construct demonstrated that has a great efficiency for use as a bone tissue engineered bioimplant.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Técnicas de Cultura de Células , Matriz Extracelular , Humanos , Osteogênese/fisiologia , Células-Tronco Pluripotentes/fisiologia , Alicerces Teciduais
9.
J Cell Biochem ; 120(4): 6339-6346, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320930

RESUMO

Implants that can enhance the stem cells differentiation in the absence of the chemical osteogenic growth factors will attract the great interest of orthopedic scientists. Inorganic polyphosphate (poly-P), as a ubiquitous biological polymer, is one of the factors that can be an alternative for osteogenic growth factors via activating Wnt/ß-catenin signaling. In this study, poly-P was incorporated at the blend of polycaprolactone (PCL)/poly (l-lactic acid) (PLLA) electrospun nanofibers and then osteogenic differentiation potential of human-induced pluripotent stem cells (iPSCs) was investigated by the important bone markers. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) and scanning electron microscopy results confirmed the biocompatibility of the fabricated nanofibers, while higher proliferation rate of iPSCs was detected in PCL-PLLA(poly-P) group compared with the PCL-PLLA and tissue culture plate groups. Alkaline phosphatase activity, calcium content, and gene expression results demonstrated that osteogenic differentiation of iPSCs was increased when cultured on PCL-PLLA(poly-P) in comparison with other groups. According to the results, PCL-PLLA(poly-P) could be considered as a promising candidate for use as bone implants.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Polifosfatos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica de Varredura , Nanofibras , Polifosfatos/química , Alicerces Teciduais
10.
J Cell Biochem ; 120(7): 12018-12026, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30805977

RESUMO

Umbilical cord blood (UCB) hematopoietic stem cells (HSCs) transplantation (HSCTs) is considered as a therapeutic strategy for malignant and nonmalignant hematologic disorders. Nevertheless, the low number of HSCs obtained from each unit of UCB can be a major challenge for using these cells in adults. In addition, UCB is a rich source of mesenchymal stem cells (MSCs) creating hopes for nonaggressive and painless treatment in tissue engineering compared with bone marrow MSCs. This study was designed to evaluate the effects of UCB-MSCs application in UCB-HSCs expansion on the nanoscaffold that mimics the cell's natural niche. To achieve this goal, after flow cytometry confirmation of isolated HSCs from UCB, they were expanded on three-dimensional (3D) poly-l-lactic acid (PLLA) scaffolds fabricated by electrospinning and two-dimensional (2D)-culture systems, such as (1) HSCs-MSCs culturing on the scaffold, (2) HSCs culturing on the scaffold, (3) HSCs-MSCs culturing on 2D, and (4) HSCs culturing on 2D. After 7 days, real-time polymerase chain reaction (PCR) was performed to evaluate the CXCR4 gene expression in the mentioned groups. Moreover, for the next validation, the number of total HSCs, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay, scanning electron microscopy imaging, and colony-forming unit assay were evaluated as well. The results of the study indicated that UCB-MSCs interaction with HSCs in 3D-culture systems led to the highest expansion of UCB-HSCs on day 7. Flow cytometry results showed the highest purity of HSCs cocultured with MSCs. Real-time PCR showed a significant increase in gene expression of CXCR4 in the mentioned group. The highest viability and clonogenicity were detected in the mentioned group too. Considered together, our results suggest that UCB-HSCs and MSCs coculturing on PLLA scaffold could provide a proper microenvironment that efficiently promotes UCB-HSCs expansion and UCB-MSCs can also be considered as a promising candidate for UCB-HSCTs.

11.
J Cell Biochem ; 120(6): 9917-9926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548348

RESUMO

Combination of adipose-derived mesenchymal stem cells (ADSCs) and synthetic materials in terms of pancreatic tissue engineering can be considered as a treatment of diabetes. This study aimed to evaluate the differentiation of human ADSCs to pancreatic cells on poly-l-lactic acid/polyvinyl alcohol (PLLA/PVA) nanofibers as a three-dimensional (3D) scaffold. Mesenchymal stem cells (MSCs) were characterized for mesenchymal surface markers by flow cytometry. Then ADSCs were seeded on 3D scaffolds and treated with pancreatic differentiation medium. Immunostaining assay showed that ADSCs were very efficiently differentiated into a relatively homogeneous population of insulin-producing cells. Moreover, real-time RT-PCR results revealed that pancreas-specific markers were highly expressed in 3D scaffolds compared with their expression in tissue culture plates and this difference in expression level was significant. In addition, insulin and C-peptide secreted in response to varying concentrations of glucose in the 3D scaffold group was significantly higher than that in 2D culture. The results of the present study confirmed that PLLA/PVA scaffold seeded with ADSCs could be a suitable option in pancreatic tissue engineering.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Células Secretoras de Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Poliésteres/química , Álcool de Polivinil/química , Tecido Adiposo/citologia , Humanos , Células Secretoras de Insulina/citologia , Células-Tronco Mesenquimais/citologia
12.
J Cell Biochem ; 120(7): 11358-11365, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30746743

RESUMO

Owing to the fact that the cartilage tissue is not able to repair itself, the treatment of the joint damages is very difficult by current methods. Induction of tissue repair requires suitable cell and extracellular matrix. Providing these two parts can only be done using tissue engineering. In the present study, polyethersulfone (PES) and polyaniline (PANI) blend was electrospined for nanofibrous scaffold fabrication. Mesenchymal stem cells were isolated from human adipose tissue (AT-MSCs), and after characterization cultured on the PES-PANI scaffold and culture plate. Electron microscopic and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assays were used for biocompatibility evaluation of the scaffold and the chondrogenic differentiation potential of AT-MSCs were investigated by staining of proteoglycans and gene and protein expression evaluation. Alcian blue staining, real-time reverse-transcriptase polymerase chain reaction and Western blot results showed that chondrogenic differentiation potential of AT-MSCs was significantly increased when grown on PES-PANI nanofibers and was compared to the one grown on a culture plate. According to the results, PES-PANI has a promising potential to be used as a biomedical implant in patients with joints lesion, such as arthritis and osteoarthritis.

13.
J Cell Biochem ; 120(6): 9700-9708, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30582206

RESUMO

MicroRNAs (miRNAs) control gene expression at the posttranscriptional level and have a critical role in many biological processes such as oligodendrocyte differentiation. Recent studies have shown that microRNA 338 (miR-338) is overexpressed during the oligodendrocyte development process in the central nervous system; this finding indicates a potentially important role for miR-338 in oligodendrocyte development. To evaluate this assumption, we studied the effect of miR-338 overexpression on promoting the differentiation of oligodendrocyte progenitor cells (OPCs), derived from human-induced pluripotent stem cells (hiPSC), into preoligodendrocyte. hiPSCs were differentiated into OPCs after treating for 16 days with basic fibroblast growth factor (BFGF), epidermal growth factor (FGF), and platelet-derived growth factor (PDGF)-AA. Bipolar OPCs appeared and the expression of OPC-related markers, including Nestin, Olig2, Sox10, PDGFRα, and A2B5 was confirmed by real-time polymerase chain reaction (PCR) and immunofluorescence. Then, OPCs were transduced by miR-338 expressing lentivirus or were treated with triiodothyronine (T3) for 6 days. Data obtained from real-time PCR and immunofluorescence experiment indicated that preoligodendrocyte markers such as Sox10, O4, and MBP were expressed at higher levels in transduced cells with miR-338 in comparison with the T3 group. So, the overexpression of miR-338 in iPSC-derived OPCs can promote their differentiation into preoligodendrocyte which can be used in cell therapy of myelin-related diseases.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/biossíntese , Oligodendroglia/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Oligodendroglia/citologia
14.
J Cell Biochem ; 120(10): 16750-16759, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31081968

RESUMO

Bioactive scaffolds that can increase transplanted cell survival time at the defect site have a great promising potential to use clinically since tissue regeneration or secretions crucially depend on the transplanted cell survival. In this study embedded basic fibroblast growth factor (bFGF)-polycaprolactone-polyvinylidene fluoride (PCL-PVDF) hybrid was designed and fabricated by electrospinning as a bio-functional nanofibrous scaffold for bone tissue engineering. After morphological characterization of the PCL-PVDF (bFGF) scaffold, nanofibers biocompatibility was investigated by culturing of the human induced pluripotent stem cells (iPSCs). Then, the bone differentiation capacity of the iPSCs was evaluated when grown on the PCL-PVDF and PCL-PVDF (bFGF) scaffolds in comparison with culture plate as a control using evaluating of the common osteogenic markers. The viability assay displayed a significant increase in iPSCs survival rate when grown on the bFGF content scaffold. The highest alkaline phosphatase activity and mineralization were detected in the iPSCs while grown on the PCL-PVDF (bFGF) scaffolds. Obtained results from gene and protein expression were also demonstrated the higher osteoinductive property of the bFGF content scaffold compared with the scaffold without it. According to the results, the release of bFGF from PCL-PVDF nanofibers increased survival and proliferation rate of the iPSCs, which followed by an increase in its osteogenic differentiation potential. Taking together, PCL-PVDF (bFGF) nanofibrous scaffold demonstrated that can be noted as a promising candidate for treating the bone lesions by tissue engineering products.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Polivinil/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Fator 2 de Crescimento de Fibroblastos/química , Fraturas Ósseas/terapia , Humanos , Camundongos , Nanocompostos/química , Engenharia Tecidual/métodos
15.
J Cell Biochem ; 120(4): 6683-6697, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30417406

RESUMO

Liver tissue engineering as a therapeutic option for restoring of damaged liver function has a special focus on using native decellularized liver matrix, but there are limitations such as the shortage of liver donor. Therefore, an appropriate alternative scaffold is needed to circumvent the donor shortage. This study was designed to evaluate hepatic differentiation of human induced pluripotent stem cells (hiPSCs) in decellularized Wharton's jelly (WJ) matrix as an alternative for native liver matrix. WJ matrices were treated with a series of detergents for decellularization. Then hiPSCs were seeded into decellularized WJ scaffold (DWJS) for hepatic differentiation by a defined induction protocol. The DNA quantitative assay and histological evaluation showed that cellular and nuclear materials were efficiently removed and the composition of extracellular matrix was maintained. In DWJS, hiPSCs-derived hepatocyte-like cells (hiPSCs-Heps) efficiently entered into the differentiation phase (G1) and gradually took a polygonal shape, a typical shape of hepatocytes. The expression of hepatic-associated genes (albumin, TAT, Cytokeratin19, and Cyp7A1), albumin and urea secretion in hiPSCs-Heps cultured into DWJS was significantly higher than those cultured in the culture plates (2D). Altogether, our results suggest that DWJS could provide a proper microenvironment that efficiently promotes hepatic differentiation of hiPSCs.


Assuntos
Diferenciação Celular , Matriz Extracelular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Regeneração Hepática , Fígado/citologia , Engenharia Tecidual/métodos , Geleia de Wharton/citologia , Biomarcadores/metabolismo , Ciclo Celular , Proliferação de Células , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Alicerces Teciduais , Geleia de Wharton/metabolismo
16.
Biologicals ; 54: 39-43, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29776735

RESUMO

Coculture systems are widely used in tissue engineering to mimic cell-cell interactions between different populations. This study aimed to find an improved and convenient system for the corneal epithelial differentiation of conjunctiva derived mesenchymal stem cells (CJMSCs). Thus, the cells were used to reconstruct corneal epithelial cells. Obtained by flow cytometry data, 51.9% of isolated CJMSCs were immune reactive for SSEA4+ antibody which are more potent to differentiate into corneal epithelial cells. A differential medium in a single culture plate was applied and compared to a Coculture with a SHEM medium and a Coculture with a commercial medium. It was found that CJMSCs can be induced to corneal epithelial cells through in vitro co-culturing in a SHEM medium; this was confirmed with immunostaining results. Moreover, relative gene expression results showed that a Coculture system with a SHEM medium can provide a more favorable microenvironment for cells to differentiate into epithelial cells than a single culture or a Coculture with a CnT-Prime commercial medium. Finally, as platforms for cell differentiation, CJMSCs can differentiate into epithelial lineages. This was proven using immunofluorescence staining.


Assuntos
Diferenciação Celular , Túnica Conjuntiva/metabolismo , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Técnicas de Cocultura , Túnica Conjuntiva/citologia , Células Epiteliais/citologia , Epitélio Corneano/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco
17.
Regen Ther ; 26: 251-259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974324

RESUMO

Diabetes Mellitus (DM) disrupts the body's capability to control blood glucose statuses. Type 1 diabetes mellitus (T1DM) arises from inadequate insulin production and is treated with insulin replacement therapy. Stem cell therapy is a hopeful treatment for T1DM that involves using adult stem cells to generate insulin-producing cells (IPCs). Mesenchymal stem cells (MSCs) are particularly advantageous for generating IPCs. The islet cells require interactions with the extracellular matrix for survival, which is lacking in conventional 2D culture systems. Natural or synthetic polymers create a supportive 3D microenvironment in tissue engineering. We aim to construct superior differentiation conditions employing polyethersulfone (PES)/Fish gelatin scaffolds to differentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to IPCs. In this study, the PES/fish gelatin scaffold (3D) was manufactured by electrospinning, and then its biocompatibility and non-toxicity were investigated by MTT assay. After that, scaffold-supportive effects on WJ-MSCs differentiation to IPCs were studied at the gene and protein levels. After exposure to the differentiation media, 2D and 3D (PES/Fish gelatin) cultured cells were slowly aggregated and developed spherical-shaped clusters. The viability of cells was found to be comparable in both 2D and 3D cultures. The gene expression analysis showed that efficiency of differentiation was more elevated in 3D culture. Additionally, ELISA results indicated that C-peptide and insulin release were more significant in 3D than in 2D culture. In conclusion, the PES/fish gelatin scaffold is highly promising for pancreatic tissue engineering because it supports the viability, growth, and differentiation of WJ-MSCs into IPCs.

18.
3 Biotech ; 13(9): 306, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37605761

RESUMO

In this research, for the first time, A. flavus uricase gene was cloned in pPink-UOX plasmid under strong alcohol oxidase promoter of Pichia pink expression system after codon optimization. After selecting the best uricase producing clone with an activity of 0.7 U/ml at the Flask level, a 5-L fermenter was used to increase the expression of the enzyme. Within 60 h, the fermentation process produced 1500 g of biomass from 4 L of semi defined culture media and expressed 2.5 g/L of the enzyme. The purity of recombinant uricase production using three consecutive DEAE Sepharose, CM Sepharose and Phenyl Sepharose columns was above 99%, which was confirmed by SDS-PAGE and RP-HPLC analyses. Size exclusion chromatography analysis showed that the purified enzyme has comparable heterogeneity to the Rasburicase. The yield of recombinant uricase production in this study was 63% and its specific activity was 24 U/mg. The high expression of recombinant uricase in the Pichia pink strain and the increased enzyme activity compared to the standard sample indicate the potential of therapeutic and diagnostic applications of recombinant uricase in the present study.

19.
Curr Stem Cell Res Ther ; 16(2): 145-154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32564764

RESUMO

Stem cell-based therapy is one of the therapeutic options with promising results in the treatment of diabetes. Stem cells from various sources are expanded and induced to generate the cells capable of secreting insulin. These insulin-producing cells [IPCs] could be used as an alternative to islets in the treatment of patients with diabetes. Soluble growth factors, small molecules, geneencoding transcription factors, and microRNAs [miRNAs] are commonly used for the induction of stem cell differentiation. MiRNAs are small non-coding RNAs with 21-23 nucleotides that are involved in the regulation of gene expression by targeting multiple mRNA targets. Studies have shown the dynamic expression of miRNAs during pancreatic development and stem cell differentiation. MiR- 7 and miR-375 are the most abundant miRNAs in pancreatic islet cells and play key roles in pancreatic development as well as islet cell functions. Some studies have tried to use these small RNAs for the induction of pancreatic differentiation. This review focuses on the miRNAs used in the induction of stem cells into IPCs and discusses their functions in pancreatic ß-cells.


Assuntos
Diferenciação Celular , Diabetes Mellitus , Células Secretoras de Insulina , MicroRNAs , Diabetes Mellitus/terapia , Humanos , Insulina , MicroRNAs/genética
20.
Heliyon ; 7(9): e08027, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34549097

RESUMO

Iran was among countries which was hard hit at the early stage of the coronavirus disease 2019 (COVID-19) pandemic and dealt with the second wave of the pandemic in May and June 2020; however, there are a very limited number of complete genome sequences of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Iran. In this study, complete genome sequences of the virus in the samples obtained from three patients in Alborz province in May and June 2020 were generated and analyzed using bioinformatic methods. The sequenced genomes were positioned in a cluster with B.4 lineage along with the sequences from other countries namely, United Arab Emirates and Oman. There were seven single nucleotide variations (SNVs) in common in all samples and only one of the sequenced genomes showed the D614G amino acid substitution. Three SNVs, 1397 G > A, 28688T > C, 29742 G > T, which had already been reported in February, were found with high frequency in all the sequenced genomes in this study, implying that viral diversity reflected in the early stages of viral transmission in Iran were established in the second wave. Considering the importance of molecular epidemiology in response to ongoing pandemic, there is an urgent need for more complete genome sequencing and comprehensive analyses to gain insight into the transmission, adaptation and evolution of the virus in Iran.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA