Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 25(15): 17847-17863, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789276

RESUMO

Optical frequency comb lines with poor carrier to noise ratio (CNR) are significantly improved by Brillouin amplification using its extreme narrow bandwidth gain to suppress out of band noise, enabling higher quality signal modulation. Its application to spectral lines of narrow 10 GHz pitch and poor CNR is shown to suppress the otherwise strong phase distortion caused by poor CNR after encoding with 96 Gb/s DP-64-QAM signals and restore the bit error rate (BER) to below the limit for standard forward error correction (FEC). This is also achieved with the required frequency shifted optical pump for amplification obtained by seeding it from the comb itself, sparing the need for lasers and frequency locking. Simultaneous CNR improvement for 38 comb lines is also achieved with BER restored to below the FEC limit, enabled by a multi-line pump that is pre-dispersed to suppress its spectral distortion from the Kerr effect in the gain medium. Carrier performance at minimum BER shows minimal noise impact from the Brillouin amplifier itself. The results highlight the unique advantage of Brillouin gain for phase sensitive communications in transforming otherwise noisy spectral lines into useful high quality signal carriers.

2.
Opt Express ; 23(21): 27920-30, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480450

RESUMO

A newly proposed concept, which is called hybrid optical phase squeezer (HOPS), achieves multi-level optical phase quantization through coherent addition of two (dual-wave scheme) or three (triple-wave scheme) optical waves exploiting optical parametric processes and electro-optic modulation. The triple-wave scheme enables signal phase regeneration free from phase-to-amplitude noise transfer, which is inevitable in the dual-wave scheme. By using HOPS in the dual-wave scheme, 3-fold phase-noise reduction was achieved for 24-Gb/s QPSK signals with a slight increase of amplitude noise. On the other hand, HOPS in the triple-wave scheme allowed phase regeneration of 12-Gb/s BPSK signal with a suppression of phase-to-amplitude noise transfer.

3.
Opt Express ; 22(10): 12177-88, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921338

RESUMO

We present a new method to perform phase regeneration of phase encoded signals. In our concept called "hybrid optical phase squeezer (HOPS)," a multilevel phase-quantized signal is synthesized through the coherent addition of a phase-conjugate copy of the signal and a phase harmonic of the signal with a frequency shifter. Unlike the conventional method by phase sensitive amplification, HOPS does not use any optical parametric gain such that only optical elements with low optical nonlinearity are necessary for optical phase quantization. In the proof-of-concept experiment, it is confirmed that a 2-level HOPS can perform quadrature squeezing with an extinction ratio of 40 dB. Simultaneous phase regeneration of two coherent wavelength-division-multiplexed 10.75-Gb/s binary phase-shift keyed signals is successfully demonstrated using a 2-level HOPS based on a semiconductor optical amplifier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA