RESUMO
Sugarcane production has been linked to the release of heavy metals and metalloids (HM/MTs) into the environment, raising concerns about potential health risks. This study aimed to assess the levels of 19 HM/MTs in children living near a sugarcane mill through a pilot biomonitoring investigation. We investigated sex-related differences in these element levels and their correlations. A cross-sectional study was conducted, analyzing data from 20 children in the latter part of 2023. Spearman correlation coefficients with 95% confidence intervals (CIs) were used to assess the relationships between urinary HM/MT levels. Detectable levels of 17 out of the 19 HM/MTs were found across the entire study sample, with arsenic and copper detectable in 95% of the children. Titanium exhibited higher levels in boys compared to girls (p = 0.017). We identified 56 statistically significant correlations, with 51 of them being positive, while the remaining coefficients indicated negative relationships. This study characterized HM/MT levels in school-aged children residing near a sugarcane mill through a pilot biomonitoring investigation. Further research employing larger sample sizes and longitudinal assessments would enhance our understanding of the dynamics and health impacts of HM/MT exposure in this vulnerable population.
RESUMO
Land-cover change in eastern lowland Bolivia was documented using Landsat images from five epochs for all landscapes situated below the montane tree line at approximately 3000 m, including humid forest, inundated forest, seasonally dry forest, and cloud forest, as well as scrublands and grasslands. Deforestation in eastern Bolivia in 2004 covered 45,411 km2, representing approximately 9% of the original forest cover, with an additional conversion of 9042 km2 of scrub and savanna habitats representing 17% of total historical land-cover change. Annual rates of land-cover change increased from approximately 400 km2 y(-1) in the 1960s to approximately 2900 km2 y(-1) in the last epoch spanning 2001 to 2004. This study provides Bolivia with a spatially explicit information resource to monitor future land-cover change, a prerequisite for proposed mechanisms to compensate countries for reducing carbon emissions as a result of deforestation. A comparison of the most recent epoch with previous periods shows that policies enacted in the late 1990s to promote forest conservation had no observable impact on reducing deforestation and that deforestation actually increased in some protected areas. The rate of land-cover change continues to increase linearly nationwide, but is growing faster in the Santa Cruz department because of the expansion of mechanized agriculture and cattle farms.
Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Bolívia , Conservação dos Recursos Naturais/tendências , Ecossistema , Monitoramento Ambiental/métodos , Agricultura Florestal/tendências , Geografia , HumanosRESUMO
A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south-southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Clima Tropical , Brasil , Dióxido de Carbono/análise , Secas , Política Ambiental , Incêndios , Efeito Estufa , Chuva , ÁrvoresRESUMO
Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.