Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biology (Basel) ; 10(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943175

RESUMO

Nonhuman primates (NHPs) are relevant models to study the pathogenesis of tuberculosis (TB) and evaluate the potential of TB therapies, but rapid tools allowing diagnosis of active pulmonary TB in NHPs are lacking. This study investigates whether low complexity lateral flow assays utilizing upconverting reporter particles (UCP-LFAs) developed for rapid detection of human serum proteins can be applied to detect and monitor active pulmonary TB in NHPs. UCP-LFAs were used to assess serum proteins levels and changes in relation to the MTB challenge dosage, lung pathology, treatment, and disease outcome in experimentally MTB-infected macaques. Serum levels of SAA1, IP-10, and IL-6 showed a significant increase after MTB infection in rhesus macaques and correlated with disease severity as determined by pathology scoring. Moreover, these biomarkers could sensitively detect the reduction of bacterial levels in the lungs of macaques due to BCG vaccination or drug treatment. Quantitative measurements by rapid UCP-LFAs specific for SAA1, IP-10, and IL-6 in serum can be utilized to detect active progressive pulmonary TB in macaques. The UCP-LFAs thus offer a low-cost, convenient, and minimally invasive diagnostic tool that can be applied in studies on TB vaccine and drug development involving macaques.

2.
NPJ Vaccines ; 6(1): 3, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397986

RESUMO

We present a non-human primate mycobacterial growth inhibition assay (MGIA) using in vitro blood or cell co-culture with the aim of refining and expediting early tuberculosis vaccine testing. We have taken steps to optimise the assay using cryopreserved peripheral blood mononuclear cells, transfer it to end-user institutes, and assess technical and biological validity. Increasing cell concentration or mycobacterial input and co-culturing in static 48-well plates compared with rotating tubes improved intra-assay repeatability and sensitivity. Standardisation and harmonisation efforts resulted in high consistency agreements, with repeatability and intermediate precision <10% coefficient of variation (CV) and inter-site reproducibility <20% CV; although some systematic differences were observed. As proof-of-concept, we demonstrated ability to detect a BCG vaccine-induced improvement in growth inhibition in macaque samples, and a correlation between MGIA outcome and measures of protection from in vivo disease development following challenge with either intradermal BCG or aerosol/endobronchial Mycobacterium tuberculosis (M.tb) at a group and individual animal level.

3.
F1000Res ; 10: 257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976866

RESUMO

The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Cobaias , Leucócitos Mononucleares , Camundongos , Primatas , Tuberculose/prevenção & controle
4.
Cell Rep Med ; 2(1): 100187, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33521701

RESUMO

To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.


Assuntos
Vacina BCG/administração & dosagem , Imunidade nas Mucosas , Mycobacterium tuberculosis/imunologia , Mucosa Respiratória/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Administração Intranasal , Animais , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Feminino , Regulação da Expressão Gênica , Injeções Intradérmicas , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Macaca mulatta , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Mucosa Respiratória/microbiologia , Células Th1/imunologia , Células Th1/microbiologia , Células Th17/imunologia , Células Th17/microbiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
5.
Cell Rep Med ; 2(1): 100185, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33521699

RESUMO

BCG vaccination can strengthen protection against pathogens through the induction of epigenetic and metabolic reprogramming of innate immune cells, a process called trained immunity. We and others recently demonstrated that mucosal or intravenous BCG better protects rhesus macaques from Mycobacterium tuberculosis infection and TB disease than standard intradermal vaccination, correlating with local adaptive immune signatures. In line with prior mouse data, here, we show in rhesus macaques that intravenous BCG enhances innate cytokine production associated with changes in H3K27 acetylation typical of trained immunity. Alternative delivery of BCG does not alter the cytokine production of unfractionated bronchial lavage cells. However, mucosal but not intradermal vaccination, either with BCG or the M. tuberculosis-derived candidate MTBVAC, enhances innate cytokine production by blood- and bone marrow-derived monocytes associated with metabolic rewiring, typical of trained immunity. These results provide support to strategies for improving TB vaccination and, more broadly, modulating innate immunity via mucosal surfaces.


Assuntos
Vacina BCG/administração & dosagem , Imunidade nas Mucosas , Mycobacterium tuberculosis/imunologia , Mucosa Respiratória/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Acetilação , Administração Intranasal , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/microbiologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Feminino , Regulação da Expressão Gênica , Histonas/genética , Histonas/imunologia , Injeções Intravenosas , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Macaca mulatta , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Mucosa Respiratória/microbiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
6.
Front Microbiol ; 11: 1339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625195

RESUMO

Vaccination through the natural route of infection represents an attractive immunization strategy in vaccinology. In the case of tuberculosis, vaccine delivery by the respiratory route has regained interest in recent years, showing efficacy in different animal models. In this context, respiratory vaccination triggers lung immunological mechanisms which are omitted when vaccines are administered by parenteral route. However, contribution of mucosal antibodies to vaccine- induced protection has been poorly studied. In the present study, we evaluated in mice and non-human primates (NHP) a novel whole cell inactivated vaccine (MTBVAC HK), by mucosal administration. MTBVAC HK given by intranasal route to BCG-primed mice substantially improved the protective efficacy conferred by subcutaneous BCG only. Interestingly, this improved protection was absent in mice lacking polymeric Ig receptor (pIgR), suggesting a crucial role of mucosal secretory immunoglobulins in protective immunity. Our study in NHP confirmed the ability of MTBVAC HK to trigger mucosal immunoglobulins. Importantly, in vitro assays demonstrated the functionality of these immunoglobulins to induce M. tuberculosis opsonization in the presence of human macrophages. Altogether, our results suggest that mucosal immunoglobulins can be induced by vaccination to improve protection against tuberculosis and therefore, they represent a promising target for next generation tuberculosis vaccines.

7.
NPJ Vaccines ; 5(1): 39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435513

RESUMO

Tuberculosis (TB) still is the principal cause of death from infectious disease and improved vaccination strategies are required to reduce the disease burden and break TB transmission. Here, we investigated different routes of administration of vectored subunit vaccines based on chimpanzee-derived adenovirus serotype-3 (ChAd3) for homologous prime-boosting and modified vaccinia virus Ankara (MVA) for heterologous boosting with both vaccine vectors expressing the same antigens from Mycobacterium tuberculosis (Ag85B, ESAT6, Rv2626, Rv1733, RpfD). Prime-boost strategies were evaluated for immunogenicity and protective efficacy in highly susceptible rhesus macaques. A fully parenteral administration regimen was compared to exclusive respiratory mucosal administration, while parenteral ChAd3-5Ag prime-boosting and mucosal MVA-5Ag boosting were applied as a push-and-pull strategy from the periphery to the lung. Immune analyses corroborated compartmentalized responses induced by parenteral versus mucosal vaccination. Despite eliciting TB-specific immune responses, none of the investigational regimes conferred a protective effect by standard readouts of TB compared to non-vaccinated controls, while lack of protection by BCG underpinned the stringency of this non-human primate test modality. Yet, TB manifestation after full parenteral vaccination was significantly less compared to exclusive mucosal vaccination.

8.
Front Immunol ; 10: 2479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736945

RESUMO

While tuberculosis continues to afflict mankind, the immunological mechanisms underlying TB disease development are still incompletely understood. Advanced preclinical models for TB research include both rhesus and cynomolgus macaques (Macaca mulatta and Macaca fascicularis, respectively), with rhesus typically being more susceptible to acute progressive TB disease than cynomolgus macaques. To determine which immune mechanisms are responsible for this dissimilar disease development, we profiled a broad range of innate and adaptive responses, both local and peripheral, following experimental pulmonary Mycobacterium tuberculosis (Mtb) infection of both species. While T-cell and antibody responses appeared indistinguishable, we identified anti-inflammatory skewing of peripheral monocytes in rhesus and a more prominent local pro-inflammatory cytokine release profile in cynomolgus macaques associated with divergent TB disease outcome. Importantly, these differences were detectable both before and early after infection. This work shows that inflammatory and innate immune status prior to and at early stages after infection, critically affects outcome of TB infection.


Assuntos
Macaca fascicularis/imunologia , Macaca mulatta/imunologia , Mycobacterium tuberculosis , Tuberculose Pulmonar/imunologia , Animais , Citocinas/imunologia , Imunidade Inata , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
9.
Nat Med ; 25(2): 255-262, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664782

RESUMO

Tuberculosis (TB) remains the deadliest infectious disease1, and the widely used Bacillus Calmette-Guérin (BCG) vaccine fails to curb the epidemic. An improved vaccination strategy could provide a cost-effective intervention to break the transmission cycle and prevent antimicrobial resistance2,3. Limited knowledge of the host responses critically involved in protective immunity hampers the development of improved TB vaccination regimens. Therefore, assessment of new strategies in preclinical models to select the best candidate vaccines before clinical vaccine testing remains indispensable. We have previously established in rhesus macaques (Macaca mulatta) that pulmonary mucosal BCG delivery reduces TB disease where standard intradermal injection fails4,5. Here, we show that pulmonary BCG prevents infection by using a repeated limiting-dose Mycobacterium tuberculosis challenge model and identify polyfunctional T-helper type 17 (TH17) cells, interleukin-10 and immunoglobulin A as correlates of local protective immunity. These findings warrant further research into mucosal immunization strategies and their translation to clinical application to more effectively prevent the spread of TB.


Assuntos
Vacina BCG/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Carga Bacteriana , Relação Dose-Resposta Imunológica , Imunidade Humoral , Interferon gama/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macaca mulatta , Masculino , Mucosa/imunologia , Vacinação
10.
Tuberculosis (Edinb) ; 104: 46-57, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28454649

RESUMO

M.bovis BCG vaccination against tuberculosis (TB) notoriously displays variable protective efficacy in different human populations. In non-human primate studies using rhesus macaques, despite efforts to standardise the model, we have also observed variable efficacy of BCG upon subsequent experimental M. tuberculosis challenge. In the present head-to-head study, we establish that the protective efficacy of standard parenteral BCG immunisation varies among different rhesus cohorts. This provides different dynamic ranges for evaluation of investigational vaccines, opportunities for identifying possible correlates of protective immunity and for determining why parenteral BCG immunisation sometimes fails. We also show that pulmonary mucosal BCG vaccination confers reduced local pathology and improves haematological and immunological parameters post-infection in animals that are not responsive to induction of protection by standard intra-dermal BCG. These results have important implications for pulmonary TB vaccination strategies in the future.


Assuntos
Vacina BCG/administração & dosagem , Imunogenicidade da Vacina , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Vacinação , Administração por Inalação , Animais , Vacina BCG/toxicidade , Modelos Animais de Doenças , Feminino , Imunidade nas Mucosas , Injeções Intradérmicas , Macaca mulatta , Masculino , Mycobacterium tuberculosis/patogenicidade , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/microbiologia
11.
Hum Vaccin Immunother ; 10(6): 1622-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732313

RESUMO

Autologous tumor cell-based vaccines provide a wide range of tumor antigens and personalized neo-epitopes based on individual tumors' unique antigenic mutanome signatures. However, tumor-derived factors may hamper in situ maturation of dendritic cells (DC) and thus interfere with the generation of effective anti-tumor immunity. As the skin is a preferred site for tumor vaccine delivery, we investigated the influence of primary colon carcinoma-derived soluble factors on the maturation state of migrating DC in a human skin explant model. Primary tumor-derived supernatants (TDSN) enhanced the phenotypic maturation state of skin-emigrated DC, resulting in an increased T-cell stimulatory ability in an allogeneic mixed leukocyte response. In case of monocyte-derived DC a similar TDSN-induced maturation induction was found to entirely depend on cyclooxygenase (COX)-regulated prostaglandins. In contrast, the increase in skin-emigrated DC maturation was completely prostaglandin-independent, as evidenced by the inability of the COX inhibitor indomethacin to abrogate this TDSN-induced effect. Although TDSN conditioning affected a drop in IL-12p70 release by the skin-emigrated DC and induced a predominant Th17/Th22 transcriptional profile in subsequently stimulated T-cells, Th cell subset differentiation, as assessed by intracellular cytokine expression upon polyclonal priming and re-stimulation, was not affected. Comparative analysis of phenotypic and transcriptional profiles suggests that the observed maturational effects in skin-derived DC may have been induced by tumor-derived GM-CSF. In conclusion, soluble factors derived from whole-cell colon tumor vaccines will not negatively impact DC migration and maturation in human skin, but rather induce DC maturation that will facilitate the priming of a poly-functional Th cell response.


Assuntos
Carcinoma/química , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/química , Células Dendríticas/imunologia , Fatores Imunológicos/metabolismo , Pele/imunologia , Animais , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Fatores Imunológicos/isolamento & purificação , Camundongos , Pele/efeitos dos fármacos
12.
PLoS One ; 8(7): e70237, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23875023

RESUMO

In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14(+)CD141(+)DC-SIGN(+) DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a(+) subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8(+) T cells, migration of immature CD14(+) DDC was accompanied by increased release of IL-10, poor expansion of CD4(+) and CD8(+) T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.


Assuntos
Diferenciação Celular/imunologia , Movimento Celular/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-10/farmacologia , Células de Langerhans/imunologia , Pele/imunologia , Subpopulações de Linfócitos T/citologia , Análise de Variância , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Movimento Celular/efeitos dos fármacos , Citometria de Fluxo , Regulação da Expressão Gênica/imunologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Subpopulações de Linfócitos T/imunologia
13.
J Immunol ; 176(12): 7232-42, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16751366

RESUMO

Migration of dendritic cells (DC) to secondary lymphoid organs under proinflammatory conditions coincides with their maturation and acquisition of T cell stimulatory abilities. In contrast, impaired activation of DC, e.g., in tumor-conditioned environments, may hamper their activation and possibly their subsequent migration to lymph nodes, leading to either immunological tolerance or ignorance, respectively. In this study, the influence of cytokines in the peripheral skin microenvironment on the activation state of migrating cutaneous DC was assessed using an ex vivo human skin explant model. We observed a phenotypic shift from mature CD83(+) DC to immature CD14(+) macrophage-like cells within 7 days subsequent to migration from unconditioned skin. These macrophage-like cells displayed a poor T cell stimulatory ability and lacked expression of CCR7, thus precluding their migration to paracortical T cell areas in the lymph nodes. The balance of suppressive and stimulatory cytokines during the initiation of migration decided the postmigrational fate of DC with IL-10 accelerating and GM-CSF and IL-4 preventing the phenotypic switch, which proved irreversible once established. These observations indicate that, in immunosuppressed environments, a postmigrational DC-to-macrophage shift may hinder T cell activation, but also that it may be prevented by prior conditioning of the tissue microenvironment by GM-CSF and/or IL-4.


Assuntos
Movimento Celular/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Pele/citologia , Pele/imunologia , Biomarcadores/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Citocinas/fisiologia , Células Dendríticas/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Humanos , Imunofenotipagem , Interleucina-4/farmacologia , Interleucina-4/fisiologia , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Receptores de Lipopolissacarídeos/biossíntese , Macrófagos/citologia , Técnicas de Cultura de Órgãos , Pele/metabolismo , Células-Tronco/imunologia , Células-Tronco/metabolismo
14.
J Immunol ; 177(12): 8851-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17142788

RESUMO

Human adenovirus (HAdV) infection is a frequent and potentially severe complication following allogeneic stem cell transplantation in children. Because treatment with antiviral drugs is often ineffective, adoptive transfer of donor-derived HAdV-specific T cells able to control viral replication of HAdV of multiple serotypes may be an option for therapy. In healthy donors, predominantly HAdV-specific T cells expressing CD4 are detected. In this study, a preclinical in vitro model was used to measure the antiviral effect of HAdV-specific CD4+ T cells. CD4+ HAdV-specific T cell clones restricted by HLA class II molecules were generated and most of these clones recognized conserved peptides derived from the hexon protein. These cross-reactive T cell clones were able to control viral replication of multiple serotypes of HAdV in EBV-transformed B cells (B-LCL), melanoma cells (MJS) and primary bronchial epithelial cells through cognate interaction. The HAdV-specific CD4+ T cell clones were able to specifically lyse infected target cells using a perforin-dependent mechanism. Antigenic peptides were also presented to the CD4+ T cell clones when derived from endogenously produced hexon protein. Together, these results show that cross-reactive HAdV-specific CD4+ T cells can control replication of HAdV in vitro and provide a rationale for the use of HAdV-specific T cells in adoptive immunotherapy protocols for control of life-threatening HAdV-infections in immunocompromised patients.


Assuntos
Infecções por Adenovirus Humanos/terapia , Adenovírus Humanos/imunologia , Transferência Adotiva/métodos , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Replicação Viral/imunologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Células Cultivadas , Células Clonais/imunologia , Reações Cruzadas/imunologia , Citotoxicidade Imunológica , Humanos
15.
Eur J Immunol ; 36(9): 2410-23, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16933360

RESUMO

The immune response against human adenovirus (HAdV) has gained interest because of the application of HAdV-based vectors in gene therapy and the high incidence of infections in pediatric recipients of allogeneic stem cell grafts. Because antiviral medication is frequently ineffective, the option of adoptive transfer of HAdV-specific donor-derived T cells in these immunocompromised patients is investigated. To generate good manufacturing practice-compatible reagents, a panel of 63 long, overlapping, peptides of the hexon protein was screened for recognition by T cells. Five conserved peptides of 30 amino acids were identified that were recognized by the majority of adult donors. CD4+ T cells from long-term cultures of PBMC, stimulated with this set of five peptides, recognized cells infected with HAdV serotypes belonging to different species. These data demonstrate that adult human T cells preferentially recognize conserved sequences of amino acid residues from a structural protein of HAdV. In the context of gene therapy, this observation may limit the beneficial effect of switching to HAdV-based vectors derived from less common serotypes of HAdV in an attempt to circumvent pre-existing immunity. However, this cross-reactivity benefits the application of HAdV-specific T cells for adoptive immunotherapy in immunocompromised transplant recipients.


Assuntos
Adenovírus Humanos/imunologia , Linfócitos T CD4-Positivos/virologia , Proteínas do Capsídeo/imunologia , Sequência Conservada/imunologia , Adenovírus Humanos/genética , Linfócitos T CD4-Positivos/imunologia , Proteínas do Capsídeo/genética , Reações Cruzadas , Humanos , Reação em Cadeia da Polimerase
16.
Blood ; 100(2): 701-3, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12091369

RESUMO

Many human myeloid leukemia-derived cell lines possess the ability to acquire a dendritic cell (DC) phenotype. However, cytokine responsiveness is generally poor, requiring direct manipulation of intracellular signaling mechanisms for differentiation. In contrast, the CD34+ human acute myeloid leukemia cell line MUTZ-3 responds to granulocyte macrophage- colony-stimulating factor (GM-CSF), interleukin 4 (IL-4), and tumor necrosis factor alpha (TNFalpha), cytokines known to be pivotal both in vivo and in vitro for DC generation from monocytes and CD34+ stem cells. In all respects, MUTZ-3 cells behave as the immortalized equivalent of CD34+ DC precursors. Upon stimulation with specific cytokine cocktails, they acquire a phenotype consistent with either interstitial- or Langerhans-like DCs and upon maturation (mDC), express CD83. MUTZ-3 DC display the full range of functional antigen processing and presentation pathways. These findings demonstrate the unique suitability of MUTZ-3 cells as an unlimited source of CD34+ DC progenitors for the study of cytokine-induced DC differentiation.


Assuntos
Citocinas/farmacologia , Células Dendríticas/citologia , Células-Tronco Hematopoéticas/citologia , Células Tumorais Cultivadas/citologia , Células Apresentadoras de Antígenos/citologia , Antígenos CD , Antígenos CD34/análise , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunoglobulinas/análise , Imunofenotipagem , Glicoproteínas de Membrana/análise , Modelos Biológicos , Antígeno CD83
17.
J Immunol ; 168(9): 4333-43, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11970975

RESUMO

Production of immunosuppressive factors is one of the mechanisms by which tumors evade immunosurveillance. Soluble factors hampering dendritic cell (DC) development have recently been identified in culture supernatants derived from tumor cell lines. In this study, we investigated the presence of such factors in 24-h culture supernatants from freshly excised solid human tumors (colon, breast, renal cell carcinoma, and melanoma). While primary tumor-derived supernatant (TDSN) profoundly hampered the in vitro DC differentiation from CD14(+) plastic-adherent monocytes or CD34(+) precursors (based on morphology and CD1a/CD14 phenotype), the effects of tested tumor cell line-derived supernatants were minor. Cyclooxygenase (COX)-1- and COX-2-regulated prostanoids present in the primary TDSN were found to be solely responsible for the observed hampered differentiation of monocyte-derived DC (MoDC). In contrast, both prostanoids and IL-6 were found to contribute to the TDSN-induced inhibition of DC differentiation from CD34(+) precursor cells. While the addition of TDSN during differentiation interfered with the ability of CD34-derived DC to stimulate a primary allogeneic T cell response, it actually increased this ability of MoDC. These opposite effects were correlated to different effects of the TDSN on the expression levels of CD86 and HLA-DR on the DC from the different precursor origins. Although TDSN increased the T cell-stimulatory capacity of MoDC, TDSN inhibited the IL-12 production and increased the IL-10 production of MoDC, thus skewing them to a type-2 T cell-inducing phenotype. In conclusion, this study demonstrates that primary tumors negatively impact DC development and function through COX-1 and -2 regulated factors, whereas tumor-derived cell lines may lose this ability upon in vitro propagation.


Assuntos
Células Dendríticas/imunologia , Neoplasias/imunologia , Prostaglandinas/fisiologia , Antígenos CD34/análise , Carcinoma/enzimologia , Carcinoma/imunologia , Carcinoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colo/enzimologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Citocinas/biossíntese , Humanos , Fatores Imunológicos/farmacologia , Interleucina-6/fisiologia , Ativação Linfocitária , Monócitos/imunologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Células-Tronco/imunologia , Linfócitos T/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA