Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biol Cell ; 112(11): 317-334, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32648585

RESUMO

BACKGROUND: The Characeae are multicellular green algae, which are closely related to higher plants. Their internodal cells are a convenient model to study membrane transport and organelle interactions. RESULTS: In this study, we report on the effect of brefeldin A (BFA), an inhibitor of vesicle trafficking, on internodal cells of Chara australis. BFA induced the commonly observed agglomeration of Golgi bodies and trans Golgi network into 'brefeldin compartments' at concentrations between 6 and 500 µM and within 30-120 min treatment. In contrast to most other cells, however, BFA inhibited endocytosis and significantly decreased the number of clathrin-coated pits and clathrin-coated vesicles at the plasma membrane. BFA did not inhibit secretion of organelles at wounds induced by puncturing or local light damage but prevented the formation of cellulosic wound walls probably because of insufficient membrane recycling. We also found that BFA inhibited the formation of alkaline and acid regions along the cell surface ('pH banding pattern') which facilitates carbon uptake required for photosynthesis; we hypothesise that this is due to insufficient recycling of ion transporters. During long-term treatments over several days, BFA delayed the formation of complex 3D plasma membranes (charasomes). Interestingly, BFA had no detectable effect on clathrin-dependent charasome degradation. Protein sequence analysis suggests that the peculiar effects of BFA in Chara internodal cells are due to a mutation in the guanine-nucleotide exchange factor GNOM required for recruitment of membrane coats via activation of ADP-ribosylation factor proteins. CONCLUSIONS AND SIGNIFICANCE: This work provides an overview on the effects of BFA on different processes in C. australis. It revealed similarities but also distinct differences in vesicle trafficking between higher plant and algal cells. It shows that characean internodal cells are a promising model to study interactions between seemingly distant metabolic pathways.


Assuntos
Brefeldina A/farmacologia , Chara/efeitos dos fármacos , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
2.
Traffic ; 16(5): 534-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639563

RESUMO

RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Caráceas/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas de Algas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Caráceas/genética , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Mutação Puntual , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
3.
J Nanobiotechnology ; 15(1): 11, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143572

RESUMO

BACKGROUND: Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. METHODS: We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. RESULTS: Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. CONCLUSIONS: These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies.


Assuntos
Materiais Biocompatíveis/química , Cavéolas/metabolismo , Células Epiteliais/efeitos dos fármacos , Microdomínios da Membrana , Nanopartículas/química , Poliésteres/química , Células A549 , Sobrevivência Celular , Clatrina/química , Sistemas de Liberação de Medicamentos , Células Epiteliais/citologia , Humanos , Interleucina-12/metabolismo , MicroRNAs/metabolismo , Tamanho da Partícula , Pinocitose , Proteoma , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Plant Cell Physiol ; 56(10): 1981-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272553

RESUMO

Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Chara/metabolismo , Microtúbulos/metabolismo
5.
J Exp Bot ; 64(18): 5553-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24127512

RESUMO

RAB5 GTPases are important regulators of endosomal membrane traffic in yeast, plants, and animals. A specific subgroup of this family, the ARA6 group, has been described in land plants including bryophytes, lycophytes, and flowering plants. Here, we report on the isolation of an ARA6 homologue in a green alga. CaARA6 (CaRABF1) from Chara australis, a member of the Characeae that is a close relative of land plants, encodes a polypeptide of 237 aa with a calculated molecular mass of 25.4 kDa, which is highly similar to ARA6 members from Arabidopsis thaliana and other land plants and has GTPase activity. When expressed in Nicotiana benthamiana leaf epidermal cells, fluorescently tagged CaARA6 labelled organelles with diameters between 0.2 and 1.2 µm, which co-localized with fluorescently tagged AtARA6 known to be present on multivesicular endosomes. Mutations in the membrane-anchoring and GTP-binding sites altered the localization of CaARA6 comparable to that of A. thaliana ARA6 (RABF1). In characean internodal cells, confocal immunofluorescence and immunogold electron microscopy with antibodies against AtARA6 and CaARA6 revealed ARA6 epitopes not only at multivesicular endosomes but also at the plasma membrane, including convoluted domains (charasomes), and at the trans-Golgi network. Our findings demonstrate that ARA6-like proteins have a more ancient origin than previously thought. They indicate further that ARA6-like proteins could have different functions in spite of the high similarity between characean algae and flowering plants.


Assuntos
Chara/enzimologia , Endossomos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Chara/genética , Camundongos , Dados de Sequência Molecular , Corpos Multivesiculares/metabolismo , Filogenia , Epiderme Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Mutação Puntual , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia
6.
Protoplasma ; 258(4): 711-728, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33704568

RESUMO

We investigated the mechanisms and the spatio-temporal dynamics of fluid-phase and membrane internalization in the green alga Chara australis using fluorescent hydrazides markers alone, or in conjunction with styryl dyes. Using live-cell imaging, immunofluorescence and inhibitor studies we revealed that both fluid-phase and membrane dyes were actively taken up into the cytoplasm by clathrin-mediated endocytosis and stained various classes of endosomes including brefeldin A- and wortmannin-sensitive organelles (trans-Golgi network and multivesicular bodies). Uptake of fluorescent hydrazides was poorly sensitive to cytochalasin D, suggesting that actin plays a minor role in constitutive endocytosis in Chara internodal cells. Sequential pulse-labelling experiments revealed novel aspects of the temporal progression of endosomes in Chara internodal cells. The internalized fluid-phase marker distributed to early compartments within 10 min from dye exposure and after about 30 min, it was found almost exclusively in late endocytic compartments. Notably, fluid cargo consecutively internalized at time intervals of more than 1h, was not targeted to the same vesicular structures, but was sorted into distinct late compartments. We further found that fluorescent hydrazide dyes distributed not only to rapidly recycling endosomes but also to long-lived compartments that participated in plasma membrane repair after local laser injury. Our approach highlights the benefits of combining different fluid-phase markers in conjunction with membrane dyes in simultaneous and sequential application modus for investigating vesicle traffic, especially in organisms, which are still refractory to genetic transformation like characean algae.


Assuntos
Chara , Clorófitas , Membrana Celular/metabolismo , Corantes/metabolismo , Endossomos/metabolismo , Corantes Fluorescentes/metabolismo , Transporte Proteico
7.
New Phytol ; 180(4): 787-97, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18761636

RESUMO

To investigate the role of aquaporin-mediated water transport during pollen grain germination and tube growth, Arabidopsis thaliana plasma membrane intrinsic proteins (PIPs) were expressed in pollen of Lilium longiflorum (lily). Successful expression of AtPIPs in particle-bombarded lily pollen grains was monitored by co-expression with fluorescent proteins and single-cell RT-PCR, and by measuring the water permeability coefficient (P(os)) in swelling assays using protoplasts prepared from transformed pollen grains and tubes. Expression of AtPIP1;1 and AtPIP1;2 in pollen grains resulted in P(os) values similar to those measured in nontransformed pollen grain protoplasts (6.65 +/- 2.41 microm s(-1)), whereas expression of AtPIP2 significantly increased P(os) (AtPIP2;1, 13.79 +/- 6.38; AtPIP2;2, 10.16 +/- 3.30 microm s(-1)). Transformation with combinations of AtPIP1 and AtPIP2 did not further enhance P(os). Native pollen tube protoplasts showed higher P(os) values (13.23 +/- 4.14 microm s(-1)) than pollen grain protoplasts but expression of AtPIP2;1 (18.85 +/- 7.60 microm s(-1)) did not significantly increase their P(os) values. Expression of none of the tested PIPs had any effect on pollen tube growth rates. The ectopic expression of AtPIP2s in lily pollen increased the water permeability of the plasma membrane in pollen grains, but not in pollen tubes. The measured endogenous water permeability does not limit water uptake during tube growth, but has to be regulated to prevent tube bursting.


Assuntos
Aquaporinas/fisiologia , Proteínas de Arabidopsis/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Lilium/fisiologia , Tubo Polínico/fisiologia , Pólen/fisiologia , Aquaporinas/genética , Proteínas de Arabidopsis/genética , Fluorescência , Expressão Gênica , Tubo Polínico/crescimento & desenvolvimento , Protoplastos/fisiologia , Transformação Genética , Água/fisiologia
8.
Protoplasma ; 255(3): 851-862, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29247277

RESUMO

To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H+/OH- channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl2, the main known blocker of animal H+ channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H+ from the cell wall charges, the H+/OH- channel conductance/density, and self-organization are discussed. No homologies to animal H+ channels were found. Salinity activation of the H+/OH- channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.


Assuntos
Chara/fisiologia , Hidróxidos/metabolismo , Canais Iônicos/metabolismo , Prótons , Salinidade , Álcalis/metabolismo , Parede Celular/metabolismo , Chara/citologia , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Concentração de Íons de Hidrogênio , Estresse Fisiológico
9.
Front Plant Sci ; 8: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184226

RESUMO

Charasomes are convoluted plasma membrane domains in characean green algae. They are known to form in response to light via secretion of trans-Golgi network (TGN) vesicles and local inhibition of endocytosis. Charasomes are involved in the acidification of their aqueous environment, thereby facilitating photosynthesis-dependent carbon uptake. Charasome formation is reversible to allow cells to adapt to different light conditions. Here, we show that darkness-induced degradation of charasomes involves the formation of coated pits and coated vesicles. The darkness-induced degradation of charasomes can be inhibited by 1-2 µM ikarugamycin (IKA), which is considered to be a specific inhibitor of clathrin-dependent endocytosis. At a much higher concentration (100 µM), IKA also significantly reduces the internalization of styryl dyes, indicating uptake via clathrin-coated vesicles (CV). We are the first to present evidence, based on fine structure investigation, that IKA does not interfere with the formation of clathrin coat, but inhibits the detachment and/or further processing of coated vesicles. Both charasome degradation and constitutive endocytosis are also significantly inhibited by sterol complexing agents (methyl-ß-cyclodextrin and filipin). The absence of an additive effect, when applied together with IKA, suggests that charasome degradation and constitutive endocytosis (measured via styryl dye uptake) is not inhibited due to membrane retrieval via lipid rafts, but due to clathrin coat formation requirement of a specific set of sterols. Analysis of Chara australis clathrin proteins revealed two heavy chains and several light chains with sequence peculiarities, suggesting functional and/or species specific differences. The data obtained indicate that clathrin plays a central role not only in constitutive endocytosis but also in the degradation of charasomes, thereby representing a valuable system for studying targeted exo- and endocytosis.

10.
Front Plant Sci ; 7: 756, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375631

RESUMO

Wortmannin, a fungal metabolite and an inhibitor of phosphatidylinositol-3 (PI3) and phosphatidylinositol-4 (PI4) kinases, is widely used for the investigation and dissection of vacuolar trafficking routes and for the identification of proteins located at multivesicular bodies (MVBs). In this study, we applied wortmannin on internodal cells of the characean green alga Chara australis. Wortmannin was used at concentrations of 25 and 50 µM which, unlike in other cells, arrested neither constitutive, nor wounding-induced endocytosis via coated vesicles. Wortmannin caused the formation of "mixed compartments" consisting of MVBs and membranous tubules which were probably derived from the trans-Golgi network (TGN) and within these compartments MVBs fused into larger organelles. Most interestingly, wortmannin also caused pronounced changes in the morphology of the TGNs. After transient hypertrophy, the TGNs lost their coat and formed compact, three-dimensional meshworks of anastomosing tubules containing a central core. These meshworks had a size of up to 4 µm and a striking resemblance to charasomes, which are convoluted plasma membrane domains, and which serve to increase the area available for transporters. Our findings indicate that similar mechanisms are responsible for the formation of charasomes and the wortmannin-induced reorganization of the TGN. We hypothesize that both organelles grow because of a disturbance of clathrin-dependent membrane retrieval due to inhibition of PI3 and/or PI4 kinases. This leads to local inhibition of clathrin-mediated endocytosis during charasome formation in untreated cells and to inhibition of vesicle release from the TGN in wortmannin-treated cells, respectively. The morphological resemblance between charasomes and wortmannin-modified TGN compartments suggests that homologous proteins are involved in membrane curvature and organelle architecture.

11.
Protoplasma ; 252(4): 1085-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25524777

RESUMO

The characean green alga Chara australis forms complex plasma membrane convolutions called charasomes when exposed to light. Charasomes are involved in local acidification of the surrounding medium which facilitates carbon uptake required for photosynthesis. They have hitherto been only described in the internodal cells and in close contact with the stationary chloroplasts. Here, we show that charasomes are not only present in the internodal cells of the main axis, side branches, and branchlets but that the plasma membranes of chloroplast-containing nodal cells, protonemata, and rhizoids are also able to invaginate into complex domains. Removal of chloroplasts by local irradiation with intense light revealed that charasomes can develop at chloroplast-free "windows" and that the resulting pH banding pattern is independent of chloroplast or window position. Charasomes were not detected along cell walls containing functional plasmodesmata. However, charasomes formed next to a smooth wound wall which was deposited onto the plasmodesmata-containing wall when the neighboring cell was damaged. In contrast, charasomes were rarely found at uneven, bulged wound walls which protrude into the streaming endoplasm and which were induced by ligation or puncturing. The results of this study show that charasome formation, although dependent on photosynthesis, does not require intimate contact with chloroplasts. Our data suggest further that the presence of plasmodesmata inhibits charasome formation and/or that exposure to the outer medium is a prerequisite for charasome formation. Finally, we hypothesize that the absence of charasomes at bulged wound walls is due to the disturbance of uniform laminar mass streaming.


Assuntos
Membrana Celular/metabolismo , Chara/metabolismo , Cloroplastos/metabolismo , Fotossíntese/fisiologia
12.
J Membr Biol ; 215(2-3): 111-23, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17568979

RESUMO

Starting from the original theoretical descriptions of osmotically induced water volume flow in membrane systems, a convenient procedure to determine the osmotic water permeability coefficient (P (os)) and the relative nonosmotic volume (beta) of individual protoplasts is presented. Measurements performed on protoplasts prepared from pollen grains and pollen tubes of Lilium longiflorum cv. Thunb. and from mesophyll cells of Nicotiana tabacum L. and Arabidopsis thaliana revealed low values for the osmotic water permeability coefficient in the range 5-20 microm.s(-1) with significant differences in P (os), depending on whether beta is considered or not. The value of beta was determined using two different methods: by interpolation from Boyle-van't Hoff plots or by fitting a solution of the theoretical equation for water volume flow to the whole volume transients measured during osmotic swelling. The values determined with the second method were less affected by the heterogeneity of the protoplast samples and were around 30% of the respective isoosmotic protoplast volume. It is therefore important to consider nonosmotic volume in the calculation of P (os) as plant protoplasts behave as nonideal osmometers.


Assuntos
Membrana Celular/metabolismo , Osmose/fisiologia , Protoplastos/metabolismo , Água/metabolismo , Lilium/metabolismo , Permeabilidade , Pólen/metabolismo , Tubo Polínico/metabolismo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA