Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 11(10): e1004461, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506003

RESUMO

Protein-protein interfaces have been evolutionarily-designed to enable transduction between the interacting proteins. Thus, we hypothesize that analysis of the dynamics of the complex can reveal details about the nature of the interaction, and in particular whether it is obligatory, i.e., persists throughout the entire lifetime of the proteins, or not. Indeed, normal mode analysis, using the Gaussian network model, shows that for the most part obligatory and non-obligatory complexes differ in their decomposition into dynamic domains, i.e., the mobile elements of the protein complex. The dynamic domains of obligatory complexes often mix segments from the interacting chains, and the hinges between them do not overlap with the interface between the chains. In contrast, in non-obligatory complexes the interface often hinges between dynamic domains, held together through few anchor residues on one side of the interface that interact with their counterpart grooves in the other end. In automatic analysis, 117 of 139 obligatory (84.2%) and 203 of 246 non-obligatory (82.5%) complexes are correctly classified by our method: DynaFace. We further use DynaFace to predict obligatory and non-obligatory interactions among a set of 300 putative protein complexes. DynaFace is available at: http://safir.prc.boun.edu.tr/dynaface.


Assuntos
Algoritmos , Modelos Químicos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/ultraestrutura , Sítios de Ligação , Cinética , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica , Software
2.
Nucleic Acids Res ; 38(Web Server issue): W417-23, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20478828

RESUMO

DNABINDPROT is designed to predict DNA-binding residues, based on the fluctuations of residues in high-frequency modes by the Gaussian network model. The residue pairs that display high mean-square distance fluctuations are analyzed with respect to DNA binding, which are then filtered with their evolutionary conservation profiles and ranked according to their DNA-binding propensities. If the analyses are based on the exact outcome of fluctuations in the highest mode, using a conservation threshold of 5, the results have a sensitivity, specificity, precision and accuracy of 9.3%, 90.5%, 18.1% and 78.6%, respectively, on a dataset of 36 unbound-bound protein structure pairs. These values increase up to 24.3%, 93.4%, 45.3% and 83.3% for the respective cases, when the neighboring two residues are considered. The relatively low sensitivity appears with the identified residues being selective and susceptible more for the binding core residues rather than all DNA-binding residues. The predicted residues that are not tagged as DNA-binding residues are those whose fluctuations are coupled with DNA-binding sites. They are in close proximity as well as plausible for other functional residues, such as ligand and protein-protein interaction sites. DNABINDPROT is free and open to all users without login requirement available at: http://www.prc.boun.edu.tr/appserv/prc/dnabindprot/.


Assuntos
Proteínas de Ligação a DNA/química , Software , Sítios de Ligação , Proteína Receptora de AMP Cíclico/química , Internet
3.
PLoS One ; 8(9): e74320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023934

RESUMO

It is of significant interest to understand how proteins interact, which holds the key phenomenon in biological functions. Using dynamic fluctuations in high frequency modes, we show that the Gaussian Network Model (GNM) predicts hot spot residues with success rates ranging between S 8-58%, C 84-95%, P 5-19% and A 81-92% on unbound structures and S 8-51%, C 97-99%, P 14-50%, A 94-97% on complex structures for sensitivity, specificity, precision and accuracy, respectively. High specificity and accuracy rates with a single property on unbound protein structures suggest that hot spots are predefined in the dynamics of unbound structures and forming the binding core of interfaces, whereas the prediction of other functional residues with similar dynamic behavior explains the lower precision values. The latter is demonstrated with the case studies; ubiquitin, hen egg-white lysozyme and M2 proton channel. The dynamic fluctuations suggest a pseudo network of residues with high frequency fluctuations, which could be plausible for the mechanism of biological interactions and allosteric regulation.


Assuntos
Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Animais , Sequência Conservada , Evolução Molecular , Humanos , Conformação Proteica , Solventes/química
4.
J Mol Biol ; 414(2): 289-302, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22001016

RESUMO

The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community-wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting that there may be important physical chemistry missing in the energy calculations. A total of 28 research groups took up the challenge of determining what is missing: we provided structures of 87 designed complexes and 120 naturally occurring complexes and asked participants to identify energetic contributions and/or structural features that distinguish between the two sets. The community found that electrostatics and solvation terms partially distinguish the designs from the natural complexes, largely due to the nonpolar character of the designed interactions. Beyond this polarity difference, the community found that the designed binding surfaces were, on average, structurally less embedded in the designed monomers, suggesting that backbone conformational rigidity at the designed surface is important for realization of the designed function. These results can be used to improve computational design strategies, but there is still much to be learned; for example, one designed complex, which does form in experiments, was classified by all metrics as a nonbinder.


Assuntos
Modelos Moleculares , Proteínas/química , Sítios de Ligação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA