Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; 20(2): e2306464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658488

RESUMO

Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing  reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (FeOh ) and tetrahedral (FeTd ) sites in spinel ZnFe2 O4 and FeAl2 O4 , respectively. ZnFe2 O4 (136.58 min-1 F-1 cm2 ) presented higher specific activity than FeAl2 O4 (97.47 min-1 F-1 cm2 ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe2 O4 has a larger bond order to decompose PMS. Using this descriptor, high-spin FeOh is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin FeTd prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of 1 O2 on ZnFe2 O4 and O2 •- on FeAl2 O4 via quenching experiments. Electrochemical determinations reveal that FeOh has superior capability than FeTd for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe2 O4 is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.

2.
Anal Bioanal Chem ; 414(19): 5917-5928, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35723722

RESUMO

Flexible sensing is an alternative to traditional sensing and possesses good flexibility and wearability. Intrinsically conductive polymers, particularly poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), have received significant attention due to their high mechanical flexibility and good biocompatibility. Here, we report the design of highly conductive and electrochemically active PEDOT:PSS-coated plastic substrate electrodes by combining N-doped graphene (NG) or S-doped graphene (SG) with methanesulfonic acid-treated PEDOT:PSS (denoted as NG-f-MSA-PEDOT:PSS/PET and SG-f-MSA-PEDOT:PSS/PET) by a simple drop-coating method. At room temperature, the NG-f-MSA-PEDOT:PSS/PET electrode demonstrated the lowest detection limits of 17.09, 33.84, 28.30, and 44.96 nM for paracetamol, uric acid, dopamine, and catechol (S/N = 3), respectively. The NG-f-MSA-PEDOT:PSS/PET electrode had good anti-interference ability and reproducibility without employing expensive noble metals and requiring much effort to polish the surface of traditional glass carbon electrodes. Most importantly, this film electrode could maintain a stable electrochemical response under different bending and crease states and had excellent mechanical stability and flexibility.


Assuntos
Dopamina , Grafite , Acetaminofen , Compostos Bicíclicos Heterocíclicos com Pontes , Plásticos , Reprodutibilidade dos Testes , Ácido Úrico
3.
Chemistry ; 21(46): 16448-54, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26395881

RESUMO

A number of adamantane-containing ruthenium(II) and rhenium(I) complexes have been synthesized, characterized, and noncovalently functionalized with ß-cyclodextrin-capped gold nanoparticles (ß-CD-GNPs) through the host-guest interaction between cyclodextrin and adamantane. The resultant nanoconjugates have been characterized by transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and 2D ROESY (1) H NMR experiments. The Förster resonance energy transfer (FRET) properties of the nanoconjugates can be modulated by both esterase-accelerated hydrolysis and competitive displacement of steroid, by monitoring the emission intensity and luminescence lifetime. The FRET efficiencies are found to vary with the nature of the chromophores and the length of the spacer between the transition metal complexes and the GNPs. This work constitutes a "proof-of-principle" assay method for the dual-functional detection of important classes of biomolecules, such as enzymes and steroids.

4.
Water Res ; 250: 121000, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118253

RESUMO

Electrochemical methods can effectively remove nitrate nitrogen (NO3-N) and orthophosphate phosphorus (PO4-P) from wastewater. This work proposed a process for the simultaneous removal of NO3-N and PO4-P by combining electroreduction with electrochemically-induced calcium phosphate precipitation, and its performance and mechanisms were studied. For the treatment of 100 mg L-1 NO3-N and 5 mg L-1 PO4-P, NO3-N removal of 60-90% (per cathode area: 0.25-0.38 mg h-1 cm-2) and 80-90% (per cathode area: 0.33-0.38 mg h-1 cm-2) could be acquired within 3 h in single-chamber cell (SCC) and dual-chamber cell (DCC), while P removal was 80-98% (per cathode area: 0.10-0.12 mg h-1 cm-2) in SCC after 30 min and 98% (per cathode area: 0.37 mg h-1 cm-2) in DCC within 10 min. The faster P removal in DCC was due to the higher pH and more abundant Ca2+ in the cathode chamber of DCC, which was caused by the cation exchange membrane (CEM). Interestingly, NO3-N reduction enhanced P removal because more OH- can be produced by nitrate reduction than hydrogen evolution for an equal-charge reaction. For 10 mg L-1 PO4-P in SCC, when the initial NO3-N was 0, 20, 100, and 500 mg L-1, the P removal efficiencies after 1 h treatment were < 10%, 45-55%, 86-99%, and above 98% respectively. An increase in Ca2+ concentration also promoted P removal. However, Ca and P inhibited nitrate reduction in SCC at the relatively low initial Ca/P, as CaP on the cathode limited the charge or mass transfer process. The removal efficiency of NO3-N in SCC after 3 h reaction can reduce by about 17%, 40%, and 34% for Co3O4/Ti, Co/Ti, and TiO2/Ti. The degree of inhibition of P on NO3-N removal was related to the content and composition of CaP deposited on the cathode. On the cathode, the lower the deposited Ca and P, and the higher the deposited Ca/P molar ratio, the weaker the inhibition of P on NO3-N removal. Especially, P had little or even no inhibition on nitrate reduction when treated in DCC instead of SCC or under high initial Ca/P. It is speculated that under these conditions, a high local pH and local high concentration Ca2+ layer near the cathode led to a decrease in CaP deposition and an increase in Ca/P molar ratio on the cathode. High initial concentrations of NO3-N might also be beneficial in reducing the inhibition of P on nitrate reduction, as few CaP with high Ca/P molar ratios were deposited on the cathode. The evaluation of the real wastewater treatment was also conducted.


Assuntos
Nitratos , Fosfatos , Nitratos/química , Nitrogênio , Águas Residuárias , Fósforo , Eletrodos
5.
J Environ Sci (China) ; 25(1): 105-13, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23586305

RESUMO

The effects of dissolved organic matter (DOM) on the removal of nitrate-nitrogen from the model contaminated water have been investigated utilizing the strong base anion exchange resins. With the increase of gallic acid concentration from 0 to 400 mg/L, the adsorption amount of nitrate-nitrogen on the commercial resins, including D201, Purolite A 300 (A300) and Purolite A 520E (A520E), would significantly decrease. However, the presence of tannin acid has little impact on nitrate-nitrogen adsorption on them.Compared to D201 and A300 resins, A520E resin exhibited more preferable adsorption ability toward nitrate-nitrogen in the presence of competing organic molecules, such as gallic acid and tannin acid at greater levels in aqueous solution. Attractively, the equilibrium data showed that the adsorption isotherm of nitrate-nitrogen on A520E resin was in good agreement with Langmuir and Freundlich equations. The rate parameters for the intra particle diffusion have been estimated for the different initial concentrations. In batch adsorption processes, nitrate-nitrogen diffuse in porous adsorbent and rate process usually depends on t1/2 rather than the contact time. The pseudo first- and the second-order kinetic models fit better for nitrate-nitrogen adsorption onto A520E resin. The observations reported herein illustrated that A520E resin will be an excellent adsorbent for enhanced removal of nitrate-nitrogen from contaminated groundwater.


Assuntos
Resinas de Troca Aniônica/síntese química , Nitratos/isolamento & purificação , Nitrogênio/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Cinética , Solubilidade
6.
ACS Appl Mater Interfaces ; 15(4): 5720-5731, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36662519

RESUMO

Fe-based materials containing Fe-Nx sites have emerged as promising electrocatalysts in the oxygen reduction reaction (ORR), but they still suffer structural instability which may lead to loss of catalytic activity. Herein, a novel electrocatalyst Fe3C-FeSA@3DCN with the coexistence of Fe3C nanoparticles and Fe single atoms (FeSA) in a three-dimensional conductive network (3DCN) is prepared via lattice confinement and defect trapping strategies with an Fe atomic loading of as high as 4.36%. In the ORR process, the limiting current density of Fe3C-FeSA@3DCN reaches 5.72 mA cm-2, with an onset potential of 0.926 V and a Tafel slope of 66 mV/decade, showing better catalytic activity and stability than Pt/C catalysts. Notably, its assembled aqueous and solid-state Zn-air batteries (ZABs) achieve peak power densities of 166 and 56 mW cm-2, respectively, with a long service life of up to 200 h at a current density of 5 mA cm-2. In addition, the assembled ZAB can provide a constant voltage on activated carbon electrodes to perform capacitive deionization to adsorb different ions. The importance of the Fe species active sites generated by Fe3C and FeSA in the material for ORR activity to boost the electron transfer and mass transfer is demonstrated by a simple selective poisoning experiment.

7.
Chemosphere ; 310: 136740, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36209852

RESUMO

The shortage of freshwater supplies has restricted societal development. Capacitive deionization (CDI) is an emerging technology for desalination of seawater or brackish water, the performance of which is highly dependent on electrode materials. In this work, a molybdenum disulfide/carbon nanotube composite (CNTs-b-MoS2) with high capacitance was successfully synthesized using a hydrothermal method. The composite exhibited a specific capacitance of 112.79 F g-1. To reduce costs and determine the practicality of using CNTs-b-MoS2 for CDI, we combined activated carbon (AC) with CNTs-b-MoS2 as a CDI electrode. The research demonstrated that after doping with 5% (mass ratio) CNTs-b-MoS2, the specific capacitance and electrosorption capacity of AC were significantly improved and the maximum desalination capacity of CNTs-b-MoS2/AC reached 8.19 mg g-1. The low dosage of CNTs-b-MoS2 combined with the high specific surface area of AC avoided the shortcomings of CNTs-b-MoS2, namely low specific surface area and high cost. Moreover, the outstanding conductivity of CNTs-b-MoS2 improved the conductivity and enhanced the adsorption capacity of AC, giving CNTs-b-MoS2/AC potential as an advanced, low-cost CDI electrode material.


Assuntos
Nanotubos de Carbono , Purificação da Água , Carvão Vegetal , Molibdênio , Purificação da Água/métodos , Eletrodos
8.
ACS Nano ; 17(12): 11869-11881, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37289089

RESUMO

Photocatalytic reduction of CO2 to value-added solar fuels is of great significance to alleviate the severe environmental and energy crisis. Herein, we report the construction of a synergistic silver nanoparticle catalyst with adjacent atomic cobalt-silver dual-metal sites on P-doped carbon nitride (Co1Ag(1+n)-PCN) for photocatalytic CO2 reduction. The optimized photocatalyst achieves a high CO formation rate of 46.82 µmol gcat-1 with 70.1% selectivity in solid-liquid mode without sacrificial agents, which is 2.68 and 2.18-fold compared to that of exclusive silver single-atom (Ag1-CN) and cobalt-silver dual-metal site (Co1Ag1-PCN) photocatalysts, respectively. The closely integrated in situ experiments and density functional theory calculations unravel that the electronic metal-support interactions (EMSIs) of Ag nanoparticles with adjacent Ag-N2C2 and Co-N6-P single-atom sites promote the adsorption of CO2* and COOH* intermediates to form CO and CH4, as well as boost the enrichment and transfer of photoexcited electrons. Moreover, the atomically dispersed dual-metal Co-Ag SA sites serve as the fast-electron-transfer channel while Ag nanoparticles act as the electron acceptor to enrich and separate more photogenerated electrons. This work provides a general platform to delicately design high-performance synergistic catalysts for highly efficient solar energy conversion.

9.
Water Res ; 232: 119702, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758356

RESUMO

Electrochemical oxidation (EO) is an attractive option for treatment of dissolved organic matter (DOM) in landfill leachate but concerns remain over the energy efficiency and formation of oxidation byproducts ClO3- and ClO4-. In this study, EO treatment of landfill leachates was carried out using representative active and nonactive anode materials, cell configurations and current densities. Size exclusion chromatograms coupled with 2D synchronous and asynchronous correlation analysis showed that the sensitivity of DOM fractions to EO degradation was dependent on the anode material. The nonactive boron-doped diamond (BDD) anode demonstrated the best performance for DOM oxidation. The humic acid-like fraction (HA, 2.5-20 kDa) predominated the visible absorbance of landfill leachates at λ ≥400 nm, and it generally had the highest reaction rates except the occurrence of the pH-induced denaturation and precipitation of the proteinaceous biopolymer fraction (BP, >20 kDa). During the EO treatment of landfill leachate with BDD anode, the UV absorbance spectra of landfill leachates at wavelengths <400 nm were affected by the formation of free chlorine. Instead, the decrease of Abs420 was found to be a good indicator of the shift of the oxidation from predominantly HA fraction to the proteinaceous BP fraction. The behavior of the Abs420 parameter was also indicative of the transition from the energy-efficient oxidation of DOM to the dominance of side reactions of chlorine evolution and the subsequent formation of ClO3- and ClO4-. These findings suggest that the EO treatment of landfill leachate can be optimized by adjusting the current density with feedback signals from the online monitoring of Abs420, to achieve a trade-off between degradation of DOM and control of ClO3- and ClO4-.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Cloro/análise , Oxirredução , Análise Espectral
10.
Chemosphere ; 292: 133469, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973244

RESUMO

With the increasing complexity of water environment pollution, it is becoming ever more practical to study the simultaneous removal of multiple pollutants in water. Electrochemical advanced oxidation technology is considered to be one of the most promising green approaches for the degradation of organic pollutants. Herein, Ti3+ and oxygen vacancies (VO) self-doped TiO2-x nanotube array electrodes are employed to investigate the simultaneous degradation and an energy consumption assessment for the effective removal of the antibiotics tetracycline (TC) and metronidazole (MNZ). The electrocatalytic performance of the nanotube arrays prepared at different reduction times is significantly different. The electrochemical reduction of TiO2 nanotube arrays for 10 min presents the best degradation performance for TC and MNZ. When a mixed solution of TC and MNZ is simultaneously degraded, the removal rate of TC (50 mg L-1) and MNZ (50 mg L-1) within 3 h reaches 100%, while the chemical oxygen demand (COD) removal rate is 79.1%. The energy consumption is significantly reduced compared to the degradation of a single substance. Simultaneously, the current utilization rate of the electrochemical degradation system is also significantly improved, with a specific energy consumption of only 85.78 kWh kg-1 and an average current efficiency that can reach 20.2%.


Assuntos
Metronidazol , Poluentes Químicos da Água , Antibacterianos , Eletrodos , Oxirredução , Tetraciclina , Titânio , Poluentes Químicos da Água/análise
11.
Dalton Trans ; 51(32): 12314-12323, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35900080

RESUMO

Herein, an atomically dispersed palladium catalyst on a hierarchical porous structure of N-doped carbon (Pd1/N-C) is prepared using a facile freeze-drying-assisted strategy. Freeze-drying methods not only suppress the aggregation of Pd atoms but also successfully produce abundant nanopores. HAADF-STEM confirms that Pd single atoms are uniformly anchored on the N-C surface. The Pd1/N-C electrocatalyst enhances the ORR and OER activity and durability compared to N-C and Pd-NPs/N-C. Rechargeable Zn-air batteries (ZABs) based on novel Pd1/N-C exhibit a peak power density of 113.7 mW cm-2 and maintain a voltage efficiency of 64.0% after 495 cycles at a discharge current density of 5 mA cm-2. Besides, two ZABs in series can supply an LED light for at least 170 h.

12.
Chemosphere ; 293: 133580, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35026198

RESUMO

Freshwater resources are one of the core elements that affect the harmonious development of mankind and society. Capacitive deionization (CDI) technology is one of the effective methods to transform brackish water into fresh water. The choice of material for a CDI electrode is critical to its electrosorption performance, which directly affects the electrosorption performance through interface optimization. Herein, protonated carbon nitride (H-C3N4)-modified graphene oxide (H-C3N4-mGO1/8) is fabricated by a simultaneous nucleophilic addition and amide reaction in order to enhance capacitive deionization of a very low concentration brackish water. Using activated carbon (AC) as the positive electrode and H-C3N4-mGO1/8 as the negative electrode, H-C3N4-mGO1/8 || AC asymmetric CDI devices are used to remove ions from a NaCl aqueous solution. The CDI test results indicate that the system has a high electrosorption capacity of 8.36 mg g-1 in the 50 mg L-1 NaCl solution with a low applied voltage of 1.2 V, which is 1.40 times than AC || AC symmetric. Moreover, the CDI device performs faster adsorption rate of 0.1879 mg (g·min)-1 and an excellent regeneration efficiency of 100%. The salt electrosorption capacity, electrosorption rate of the H-C3N4-mGO1/8 || AC asymmetric electrodes improve with increasing applied voltage due to the stronger Coulombic interaction between the electrode and charged ions with the formation of a more sufficient electric double layer principle.


Assuntos
Purificação da Água , Eletrodos , Grafite , Nitrilas , Águas Salinas , Purificação da Água/métodos
13.
Chemosphere ; 307(Pt 4): 135915, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35977577

RESUMO

Tri(2-chloroisopropyl) phosphate (TCPP), a common organophosphate flame retardant, was frequently detected in the environment and posed threats to human health. In this work, the main component of ilmenite FeTiO3 was synthesized by the sol-gel method and employed as the catalyst for the degradation of TCPP by activating persulfate (PS) under UV irradiation. The degradation processes were fitted by the pseudo-first-order kinetic. The kobs value in UV/FeTiO3/PS system was up to 0.0056 min-1 and much higher than that in UV/PS (0.0014 min-1), UV/FeTiO3 (0.0012 min-1) and FeTiO3/PS (0.0016 min-1) systems, demonstrating a distinct synergistic effect in TCPP removal. The degradation efficiency of TCPP increased with the increase of UV intensity, PS concentration and catalyst dosage, and with the decrease of pH. By quenching experiment and EPR analysis, ·OH was confirmed to be the dominant radical in the reaction of the UV/FeTiO3/PS system. The possible degradation pathways of TCPP were dechlorination, dealkylation, and further oxidation of alkyl groups based on the theoretical calculation of frontier molecular orbits. The toxicity of degradation intermediates evaluated by luminescence inhibition rate of photoluminescence was higher than TCPP. Thus, TCPP can be degraded in the UV/FeTiO3/PS system effectively at the premise of introducing controlling measures to reduce the toxicity of degradation intermediates.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Retardadores de Chama/análise , Humanos , Ferro , Organofosfatos/química , Oxirredução , Fosfatos/química , Titânio , Raios Ultravioleta , Poluentes Químicos da Água/análise
14.
J Colloid Interface Sci ; 628(Pt B): 691-700, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027779

RESUMO

Metal-organic frameworks are a new type of catalyst precursor with high specific surface area and controllable composition, which can be modified by post-treatment and are suitable for use as cathode catalysts for Zn-air batteries (ZABs). Here, a self-doped nitrogen nanocatalyst (N-PC@CF) with a double-layered porous structure is rationally designed for flexible solid-state ZABs. The outer porous carbon shell of the N-PC@CF is highly hydrophilic and O2 permeable, while the layered porous structure exposes sufficient active sites to shorten the mass transfer distance, which would promote electrocatalytic performance and increase flexibility efficiently. The obtained N-PC@CF has an onset potential of 0.926 V and a half-wave potential of 0.843 V in the oxygen reduction reaction test, which is equivalent to commercial Pt/C. Most importantly, the maximum power density of the assembled ZAB is 134.7 mW cm-2 and it exhibits a specific capacity of 776.8 mA h g-1 at 10 mA cm-2, which is better than the 99.9 mW cm-2 of the Pt/C-based battery. An obvious improvement in the constant current discharge-charge cycle durability of the ZAB is found when compared with Pt/C. The specific capacities of ZAB with N-PC@CF as the air cathode at 5, 10 and 15 mA cm-2 are 842.7, 776.8 and 715.0 mAh g-1 (calculated by the mass of zinc consumed), respectively, corresponding to high energy densities of 1089.7, 977.3 and 842.2 Wh kg-1. A flexible solid-state battery is assembled with excellent flexibility and stability, even if the battery is folded into a large angle (160°). This work provides a new strategy for the design and synthesis of metal-free air cathodes.

15.
J Hazard Mater ; 414: 125600, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030425

RESUMO

Element-doped TiO2 nanotube arrays (TNAs) with optimized active sites provide an effective approach for significantly improving electrocatalytic performance. The challenges in such construction mainly include selection of green dopant and control of active sites. Herein, we present phytic acid as a phosphorus source for P-doped TNAs. An oxygen vacancy (Ov) and P co-doped TNAs (P-TiO2-y) was prepared as an electrochemical oxidation anode. P-TiO2-y exhibits excellent degradation activity due to the formation of Ti-O-P bonds and generation of Ov. P-doping was beneficial in improving the oxygen evolution potential of the electrode, which would be benefit for electrocatalytic degradation of pollutants. Using the P-TiO2-y anode with a current density of 10 mA/cm2 for tetracycline degradation, after a 3 h treatment, the removal rate, chemical oxygen demand and total organic carbon removal rates were 100%, 90.32% and 76.60%, respectively. The P-TiO2-y also has excellent degradation performance for phenol, hydroquinone, p-nitrophenol and metronidazole.

16.
ACS Appl Mater Interfaces ; 12(5): 6298-6308, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927902

RESUMO

Hierarchical porous carbon-encapsulated ultrasmall PtCu (UsPtCu@C) nanoparticles (NPs) were constructed based on segmentation and re-encapsulation of porous PtCu NPs by using glucose as a green biomass carbon source. The synergistic electronic effect from the bimetallic elements can enhance the catalytic activity by adjusting the surface electronic structure of Pt. Most importantly, the generated porous carbon shell provided a large contact surface area, excellent electrical conductivity, and structural stability, and the ultrasmall PtCu NPs exhibited an increased electrochemical performance compared with their PtCu matrix because of the exposure of more catalytically active centers. This synergistic relationship between the components resulted in enhanced catalytic activity and better stability of the obtained UsPtCu@C for ethylene glycol oxidation reaction and the oxygen-reduction reaction in alkaline electrolyte, which was higher than the PtCu NPs and commercial Pt/C (20 wt % Pt on Vulcan XC-72). The electrochemically active surface areas of the UsPtCu@C, PtCu NPs, and commercial Pt/C were calculated to be approximately 230.2, 32.8, and 64.0 m2/gPt, respectively; the mass activity of the UsPtCu@C for the ethylene glycol oxidation reaction was 8.5 A/mgPt, which was 14.2 and 8.5 times that of PtCu NPs and commercial Pt/C, respectively. The specific activity of UsPtCu@C was 3.7 mA/cmpt2, which was 2.1 and 2.3 times that of PtCu NPs and commercial Pt/C, respectively. The onset potential (Eon-set) of UsPtCu@C for the oxygen-reduction reaction was 0.96 V (vs reversible hydrogen electrode, RHE), which was 110 and 60 mV higher than PtCu and commercial Pt/C, respectively. The half-wave potentials (E1/2) of UsPtCu@C, PtCu, and Pt/C were 0.88, 0.56, and 0.82 V (vs RHE), respectively, which indicated that the UsPtCu@C catalyst had an excellent bifunctional electrocatalytic activity.

17.
Chemosphere ; 251: 126442, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32169715

RESUMO

This study aimed to compare the effectiveness of MAER and L20 resin for the adsorption treatment of secondary effluent, and evaluate the applicability of ozone oxidation for the reuse of desorption eluate. Bench-scale adsorption experiments showed that the MAER resin exhibited higher efficiency than L20 resin in removal of COD within 600 treated bed volumes (BV), which declined from 32.5% to 14.1% in the first and sixth treatment loading of 100 BV. On the other hand, the L20 resin displayed obviously higher removal efficiency of total nitrogen (TN) than MAER resin within 600 BV, which dropped from 74.6% to 9.8% at the same condition. The ozone oxidation treatment could achieve desirable reuse of desorption eluate, although its chemical oxygen demand (COD) concentration increased gradually in line with the reuse numbers. The uptake of COD, TN and total phosphorus declined steadily by using ozone treated eluate as the regenerant in successive adsorption-desorption cycles, but increased obviously with a new batch of regenerant. Overall, the resin adsorption could efficiently remove organic and inorganic matters from secondary effluent, while the treatment loop including desorption eluate oxidation and eluate reuse could markedly enhance the concentration ratio of treated effluent.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Adsorção , Análise da Demanda Biológica de Oxigênio , Oxirredução , Ozônio , Fósforo/análise , Poluentes Químicos da Água , Purificação da Água
18.
Sci Total Environ ; 742: 140622, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721742

RESUMO

A novel electrochemical nitrite (NaNO2) sensor was fabricated by combining nanosilver with protonated carbon nitride (H-C3N4) supported on carbon cloth (CC). H-C3N4 was distributed uniformly on the CC surface, providing more active sites for the electrocatalytic active center (nanosilver). CC as a substrate improved the H-C3N4 conductivity and provided the sensor with a flexible feature. The strong synergistic effect between CC, H-C3N4, and nanosilver can exert a significant electrocatalytic performance on the flexible sensor. The Ag/H-C3N4/CC flexible sensor electrode did not consume much more time to polish the surface of traditional electrodes, and possessed a high sensitivity of 0.85537 µA/mg, a wide linear response range that spanned 5 to 1000 µM, a low detection limit of 0.216 µM (S/N = 3), and high selectivity for nitrite in the presence of common organic and inorganic interfering species (such as CaCl2, NaCl, MgCl2, NaNO3, glucose, urea, and p-nitrophenol). The Ag/H-C3N4/CC flexible sensor can be used for sample detection of nitrite as it has a strong anti-interference ability, good reproducibility, repeatability, and long-term stability. The Ag/H-C3N4/CC sensor is a promising alternative electrode to traditional ones such as ITO, gold or glassy carbon electrodes.

19.
ACS Appl Mater Interfaces ; 11(47): 44545-44555, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31675208

RESUMO

N-doped graphene (NG), S-doped graphene (SG), and N and S co-doped graphene nanocatalysts with different doping sequences (N-SG and S-NG) are successfully synthesized by a facile low-temperature hydrothermal method. By changing the synthetic sequence, S-NG significantly increases the electron transport rate of the sensor and the electrocatalytic ability compared to NG, SG, and N-SG due to the optimal proportion of doping element content and suitable N- and S-bonding configurations. The origin of the synergistic effect of N and S co-doped graphene is confirmed. Traces of S doping greatly enhance the electrochemical performance. The large volume of S-Ox groups may prevent the analytes from approaching the catalytic sites of the sensing materials due to a steric hindrance effect. S-NG, which possesses less S-Ox groups, exhibits better performance than N-SG. Pyridinic N plays an important role in enhancing the electrochemical activity and conductivity. The simultaneous determination of aniline (AN), p-phenylenediamine (PPD), and nitrobenzene (NB) as typical toxic pollutants is performed by employing the S-NG nanoarchitecture. The detection limits (S/N = 3) for AN, PPD, and NB are 0.023, 0.051, and 0.216 µM, respectively. In addition, the S-NG sensors also have excellent anti-interference, stability, and reproducibility. The precise control and synthesis of multiheteroatoms into graphene represent a promising strategy to enhance the electrocatalytic performance in energy and environmental fields.


Assuntos
Compostos de Anilina/análise , Técnicas Eletroquímicas/métodos , Poluentes Ambientais/análise , Grafite/química , Nitrobenzenos/análise , Nitrogênio/química , Fenilenodiaminas/análise , Enxofre/química , Catálise , Técnicas Eletroquímicas/instrumentação , Grafite/síntese química , Limite de Detecção
20.
Chemosphere ; 223: 39-47, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30763914

RESUMO

In this paper, a series of mono-functional and bifunctional anion exchange resins with different kinds of trialkylammonium groups were synthesized and used for adsorption of nitrate from aqueous solution. The obtained resins were systematically characterized by scanning electron microscopy, Fourier transform infrared spectrometry and pore size distribution. Adsorptive behaviors and mechanisms were investigated by batch experiments. The nitrate could be preferentially adsorbed in the presence of chloride, sulfate and humic acid by longer-chain trialkylamine modified resins. Especially, the L20 resin with the triethylammonium functional group was demonstrated to possess high selectivity toward nitrate with the highest distribution coefficient among all tested resins. For both single and bi-solutes systems, the adsorption isotherm data could be well fitted with the Langmuir model, while the experimental kinetic data was well described by both pseudo first-order and second-order kinetic model. The L20 resin could be reused after many adsorption-desorption cycles with most of its virgin adsorption capacity for advanced wastewater treatment, indicating its great potential for the selective and efficient removal of nitrate from large amounts of municipal wastewater or surface water.


Assuntos
Resinas de Troca Aniônica/química , Nitratos/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Resinas de Troca Aniônica/síntese química , Cinética , Nitratos/isolamento & purificação , Porosidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA