Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(11): 3214-3224, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37318538

RESUMO

PURPOSE: Fibroblast activation protein is one of the most attractive targets for tumor diagnosis and therapy. There have been many successful clinical translations with small molecules and peptides, yet only a few anti-FAP antibody diagnostic or therapeutic agents have been reported. Antibodies often feature good tumor selectivity and long tumor retention, which may be a better-match with therapeutic radionuclides (e.g.,177Lu, 225Ac) for cancer therapy. Here we report a 177Lu-labeled anti-FAP antibody, PKU525, as a therapeutic radiopharmaceutical for FAP-targeted radiotherapy. METHODS: The anti-FAP antibody is produced as a derivative of sibrotuzumab. The pharmacokinetics and blocking study are performed with 89Zr-labeled antibody by PET imaging. The conjugation strategies have been screened and tested with SPECT imaging through 177Lu-labeling. The biodistribution and radiotherapy studies are performed on 177Lu-labeled anti-FAP antibody in NU/NU mice-bearing HT-1080-FAP tumors. RESULTS: A multiple time-point PET imaging study shows that the tumor accumulation of [89Zr]Zr-DFO-PKU525 is intense, selective, and relatively rapid. The time activity curve indicates that the tumor uptake continually increases until reaches the highest uptake (SUVmax = 18.4 ± 2.3, n = 4) at 192 h, then gradually declines. Radioactivity rapidly cleared from the blood, liver, and other major organs, resulting in high tumor-to-background ratios. An in vivo blocking experiment suggests that [89Zr]Zr-DFO-PKU525 is FAP-specific and the uptake in FAP-negative tumors is almost negligible. Ex vivo biodistribution study shows that the tumor uptake of [177Lu]Lu-DOTA-NCS-PKU525 is 23.04 ± 5.11% ID/g, 33.2 ± 6.36% ID/g, 19.87 ± 6.84% ID/g and 19.02 ± 5.90% ID/g at 24 h, 96 h, 168 h, and 240 h after injection (n = 5), which is corroborated with the PET imaging. In therapeutic assays, multiple doses of [177Lu]Lu-DOTA-NCS-PKU525 have been tested in tumor-bearing mice, and the data suggests that 3.7 MBq may be sufficient to completely suppress the tumor growth in mice without showing observable side effects. CONCLUSION: A FAP-targeted antibody-radionuclide conjugate was developed and evaluated in vitro and in vivo. Its tumor accumulation is rapid and high with a clean background. It remarkably suppresses the tumors in mice while the side effect is almost negligible, showing that it is promising for further clinical translational studies.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Distribuição Tecidual , Radioisótopos/uso terapêutico , Radioisótopos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoconjugados/uso terapêutico , Fibroblastos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA