Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(45): e202212251, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36109346

RESUMO

Ultrathin nanowires (NWs) have always attracted the attention of researchers due to their unique properties, but their facile synthesis is still a great challenge. Herein we developed a general method for the synthesis of rare earth (RE) oxide ultrathin NWs at atmospheric pressure and low temperature (50 °C). The formation mechanism of ultrathin NWs lies in two aspects: thermodynamic advantage of one dimensional (1D) growth at low temperature, and supplement of effective monomers. As an extension, fifteen kinds of RE oxide ultrathin NWs were synthesized through this strategy, and they all exhibited polymer-like behaviors. Meanwhile, the high viscosity, organic gel, wet- and electro-spinning of Ce-Mo-O NWs were studied in detail, demonstrating the similarity of ultrathin inorganic NWs to polymers. In addition, the Ce-Mo-O ultrathin NWs were used as photocatalysts for toluene oxidation and showed excellent performance with toluene conversion ratio of 83.8 %, suggesting their potential application in organic photocatalysis.

2.
Sci Adv ; 7(47): eabl4915, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797721

RESUMO

Electrochemical reduction of CO2 (CO2RR) to value-added liquid fuels is a highly appealing solution for carbon-neutral recycling, especially to syngas (CO/H2). Current strategies suffer from poor faradaic efficiency (FE), selectivity, and controllability to the ratio of products. In this work, we have synthesized a series of single and dual atomic catalysts on the carbon nitride nanosheets. Adjusting the ratio of La and Zn atomic sites produces syngas with a wide range of CO/H2 ratios. Moreover, the ZnLa-1/CN electrocatalyst generates the syngas with a ratio of CO/H2 = 0.5 at a wide potential range, and the total FE of CO2RR reaches 80% with good stability. Density functional theory calculations have confirmed that the Zn and La affect electronic structures and determine the formation of CO and H2, respectively. This work indicates a promising strategy in the development of atomic catalysts for more controllable CO2RR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA