Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 208(6): 1483-1492, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35246494

RESUMO

Therapies targeting programmed cell death protein 1 (PD-1) have gained great success in patients with multiple types of cancer. The regulatory mechanisms underlying PD-1 expression have been extensively explored. However, the impact of long noncoding RNAs on PD-1 expression remains elusive. In this study, we identified the Notch1/lncNDEPD1 axis, which plays a critical role in PD-1 expression in human CD8+ T cells. RNA sequencing and quantitative reverse transcription PCR data showed that lncNDEPD1 was upregulated in activated T cells, especially in PD-1high subsets. Fluorescence in situ hybridization demonstrated that lncNDEPD1 was localized in the cytoplasm. A mechanistic study showed that lncNDEPD1 could bind with miR-3619-5p and PDCD1 mRNA to prevent PDCD1 mRNA degradation and then upregulate PD-1 expression. A chromatin immunoprecipitation assay showed that Notch1 directly binds to the promoter of lncNDEPD1 instead of PDCD1 Furthermore, chimeric Ag receptor T cells expressing lncNDEPD1-specific short hairpin RNAs were generated. Chimeric Ag receptor T cells with decreased lncNDEPD1 expression showed enhanced tumoricidal effects when PD-L1 was present. Our work uncovered a new regulatory mechanism of PD-1 expression and thus provided a potential target to decrease PD-1 without affecting T cell function.


Assuntos
MicroRNAs , RNA Longo não Codificante , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Hepatology ; 73(5): 1717-1735, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682185

RESUMO

BACKGROUND AND AIMS: Cancer-associated fibroblasts (CAFs) are key players in multicellular, stromal-dependent alterations leading to HCC pathogenesis. However, the intricate crosstalk between CAFs and other components in the tumor microenvironment (TME) remains unclear. This study aimed to investigate the cellular crosstalk among CAFs, tumor cells, and tumor-associated neutrophils (TANs) during different stages of HCC pathogenesis. APPROACH AND RESULTS: In the HCC-TME, CAF-derived cardiotrophin-like cytokine factor 1 (CLCF1) increased chemokine (C-X-C motif) ligand 6 (CXCL6) and TGF-ß secretion in tumor cells, which subsequently promoted tumor cell stemness in an autocrine manner and TAN infiltration and polarization in a paracrine manner. Moreover, CXCL6 and TGF-ß secreted by HCC cells activated extracellular signal-regulated kinase (ERK) 1/2 signaling of CAFs to produce more CLCF1, thus forming a positive feedback loop to accelerate HCC progression. Inhibition of ERK1/2 or CLCF1/ciliary neurotrophic factor receptor signaling efficiently impaired CLCF1-mediated crosstalk among CAFs, tumor cells, and TANs both in vitro and in vivo. In clinical samples, up-regulation of the CLCF1-CXCL6/TGF-ß axis exhibited a marked correlation with increased cancer stem cells, "N2"-polarized TANs, tumor stage, and poor prognosis. CONCLUSIONS: This study reveals a cytokine-mediated cellular crosstalk and clinical network involving the CLCF1-CXCL6/TGF-ß axis, which regulates the positive feedback loop among CAFs, tumor stemness, and TANs, HCC progression, and patient prognosis. These results may support the CLCF1 cascade as a potential prognostic biomarker and suggest that selective blockade of CLCF1/ciliary neurotrophic factor receptor or ERK1/2 signaling could provide an effective therapeutic target for patients with HCC.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Hepatocelular/metabolismo , Quimiocina CXCL6/metabolismo , Citocinas/metabolismo , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
3.
Br J Cancer ; 123(10): 1521-1534, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32801345

RESUMO

BACKGROUND: High probability of metastasis limited the long-term survival of patients with hepatocellular carcinoma (HCC). Our previous study revealed that Galectin-3 was closely associated with poor prognosis in HCC patients. METHODS: The effects of Galectin-3 on tumour metastasis were investigated in vitro and in vivo, and the underlying biological and molecular mechanisms involved in this process were evaluated. RESULTS: Galectin-3 showed a close correlation with vascular invasion and poor survival in a large-scale study in HCC patients from multiple sets. Galectin-3 was significantly involved in diverse metastasis-related processes in HCC cells, such as angiogenesis and epithelial-to-mesenchymal transition (EMT). Mechanistically, Galectin-3 activated the PI3K-Akt-GSK-3ß-ß-catenin signalling cascade; the ß-catenin/TCF4 transcriptional complex directly targeted IGFBP3 and vimentin to regulate angiogenesis and EMT, respectively. In animal models, Galectin-3 enhanced the tumorigenesis and metastasis of HCC cells via ß-catenin signalling. Moreover, molecular deletion of Galectin-3-ß-catenin signalling synergistically improved the antitumour effect of sorafenib. CONCLUSIONS: The Galectin-3-ß-catenin-IGFBP3/vimentin signalling cascade was determined as a central mechanism controlling HCC metastasis, providing possible biomarkers for predicating vascular metastasis and sorafenib resistance, as well as potential therapeutic targets for the treatment of HCC patients.


Assuntos
Carcinoma Hepatocelular/patologia , Galectina 3/fisiologia , Neoplasias Hepáticas/patologia , beta Catenina/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Neoplasias de Tecido Vascular/genética , Neoplasias de Tecido Vascular/mortalidade , Neoplasias de Tecido Vascular/secundário , Análise de Sobrevida , Análise Serial de Tecidos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
4.
Cell Immunol ; 336: 34-39, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30591202

RESUMO

T cell receptors (TCR) diversity is known to serve as a defining hallmark of the antigen-reactive T cell repertoire. Complementarity determining region 3 (CDR3) was the most important region for the recognition of peptide-major histocompatibility complex (MHC) complexes and represented the diversity of TCR repertoire. In this study, we detected the CDR3 spectratypes by complexity scoring system to assess TCR repertoire diversity and further analyzed the correlation of CDR3 score with CD8+ T cell function and with the prognosis of chronic hepatitis C virus (HCV)-infected patients. The results demonstrated that CDR3 score was related to CD8+ T cell function and prognosis by analyzing the clinical indicators such as viral load (VL), rapid virologic response (RVR), early virologic response (EVR) and sustained virologic response (SVR). Importantly, we found that Vß27, a member of CDR3 subfamily, might play an important role in the clearance of HCV. These findings indicate that TCR diversity maybe serve as a biomarker to predict the clinical parameters of HCV-infected patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Regiões Determinantes de Complementaridade , Hepatite C Crônica/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
5.
Int J Cancer ; 143(10): 2561-2574, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29981155

RESUMO

PD-1 is highly expressed on tumor-infiltrated antigen-specific T cells and limit the antitumor function. Blocking of PD-1/PD-L1 signaling has shown unprecedented curative efficacies in patients with advanced cancer. However, only a limited population of patients benefited from such therapies. Our study aimed to explore biological properties, functional regulation and reversal of MAGE-A3-specific CD8+ T cells in patients with esophageal squamous cell carcinoma (ESCC). The underlying principle of deficiency and restoring MAGE-A3-specific CD8+ T cells function in tumor microenvironment (TME) was evaluated. MAGE-A3-specific CD8+ T cells could lyse HLA-A2+ /MAGE-A3+ tumor cells. Tetramer+ T cell frequency was higher in elder patients, but lower in patients with lymph node metastasis and late tumor stage (p < 0.05). CD107ahigh expression on functional T cells was an independent prognostic factor in Cox regression analysis. PD-1 was highly expressed on dysfunctional antigen-specific CD8+ T cells and tumor infiltrating T lymphocytes (p < 0.05). Myeloid-derived suppressor cells (MDSCs) derived-TGF-ß mediated PD-1high expression on CD8+ T cells, which led to be resistance to PD-1/PD-L1 blockade in TME. Dual PD-1/PD-L1 and TGF-ß signaling pathway blockades synergistically restored the function and antitumor ability of antigen-specific CD8+ T cells in vitro/vivo assay. The presence of functional MAGE-A3-specific CD8+ T cells had an independent prognostic impact on survival of patients with ESCC. Furthermore, MDSCs-derived TGF-ß increased PD-1 expression on T cells and decreased the sensitivity to PD-1/PD-L1 blockade. Combining T cell-based therapy with dual PD-1/PD-L1 and TGF-ß signaling pathway blockade could be considered a promising strategy for cancer treatment.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/terapia , Proteínas de Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Epitopos de Linfócito T , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/sangue , Carcinoma de Células Escamosas do Esôfago/imunologia , Antígeno HLA-A2/imunologia , Humanos , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Chin J Cancer Res ; 30(2): 157-172, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29861603

RESUMO

Programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) blockade has shown promising effects in cancer immunotherapy. Removing the so-called " brakes" on T cell immune responses by blocking the PD-1/PD-L1 check point should boost anti-tumor immunity and provide durable tumor regression for cancer patients. However, 30%-60% of patients show no response to PD-1/PD-L1 blockade. Thus, it is urgent to explore the underlying resistance mechanisms to improve sensitivity to anti-PD-1/PD-L1 therapy. We propose that the mechanisms promoting resistance mainly include T cell exclusion or exhaustion at the tumor site, immunosuppressive factors in the tumor microenvironment (TME), and a range of tumor-intrinsic factors. This review highlights the power of studying the cellular and molecular mechanisms of resistance to improve the rational design of combination therapeutic strategies that can be translated to the clinic. Here, we briefly discuss the development of PD-1/PD-L1 blockade agents and focus on the current issues and future prospects for potential combinatorial therapeutic strategies that include anti-PD-1/PD-L1 therapy, based upon the available preclinical and clinical data.

7.
Chin J Cancer Res ; 30(6): 633-646, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30700932

RESUMO

OBJECTIVE: Liver metastasis, which contributes substantially to high mortality, is the most common recurrent mode of colon carcinoma. Thus, it is necessary to identify genes implicated in metastatic colonization of the liver in colon carcinoma. METHODS: We compared mRNA profiling in 18 normal colon mucosa (N), 20 primary tumors (T) and 19 liver metastases (M) samples from the dataset GSE49355 and GSE62321 of Gene Expression Omnibus (GEO) database. Gene ontology (GO) and pathways of the identified genes were analyzed. Co-expression network and protein-protein interaction (PPI) network were employed to identify the interaction relationship. Survival analyses based on The Cancer Genome Atlas (TCGA) database were used to further screening. Then, the candidate genes were validated by our data. RESULTS: We identified 22 specific genes related to liver metastasis and they were strongly associated with cell migration, adhesion, proliferation and immune response. Simultaneously, the results showed that C-X-C motif chemokine ligand 14 (CXCL14) might be a favorable prediction factor for survival of patients with colon carcinoma. Importantly, our validated data further suggested that lower CXCL14 represented poorer outcome and contributed to metastasis. Gene set enrichment analysis (GSEA) showed that CXCL14 was negatively related to the regulation of stem cell proliferation and epithelial to mesenchymal transition (EMT). CONCLUSIONS: CXCL14 was identified as a crucial anti-metastasis regulator of colon carcinoma for the first time, and might provide novel therapeutic strategies for colon carcinoma patients to improve prognosis and prevent metastasis.

8.
Cancer Res ; 84(10): 1613-1629, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381538

RESUMO

Neutrophil extracellular traps (NET), formed by the extracellular release of decondensed chromatin and granules, have been shown to promote tumor progression and metastasis. Tumor-associated neutrophils in hepatocellular carcinoma (HCC) are prone to NET formation, highlighting the need for a more comprehensive understanding of the mechanisms of action of NETs in liver cancer. Here, we showed that DNA of NETs (NET-DNA) binds transmembrane and coiled-coil domains 6 (TMCO6) on CD8+ T cells to impair antitumor immunity and thereby promote HCC progression. TGFß1 induced NET formation, which recruited CD8+ T cells. Binding to NET-DNA inhibited CD8+ T cells function while increasing apoptosis and TGFß1 secretion, forming a positive feedback loop to further stimulate NET formation and immunosuppression. Mechanistically, the N-terminus of TMCO6 interacted with NET-DNA and suppressed T-cell receptor signaling and NFκB p65 nuclear translocation. Blocking NET formation by inhibiting PAD4 induced potent antitumor effects in wild-type mice but not TMCO6-/- mice. In clinical samples, CD8+ T cells expressing TMCO6 had an exhausted phenotype. TGFß1 signaling inhibition or TMCO6 deficiency combined with anti-PD-1 abolished NET-driven HCC progression in vivo. Collectively, this study unveils the role of NET-DNA in impairing CD8+ T-cell immunity by binding TMCO6 and identifies targeting this axis as an immunotherapeutic strategy for blocking HCC progression. SIGNIFICANCE: TMCO6 is a receptor for DNA of NETs that mediates CD8+ T-cell dysfunction in HCC, indicating that the NET-TMCO6 axis is a promising target for overcoming immunosuppression in liver cancer.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , DNA/imunologia , DNA/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem Celular Tumoral , Masculino
9.
Oncoimmunology ; 13(1): 2289738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125723

RESUMO

T/NK cell-based immunotherapy has achieved remarkable success in adult cancers but has limited efficacy in pediatric malignancies including high-risk neuroblastoma (NB). Immune defects of NB tumor microenvironment are poorly understood compared with adults. Here, we described the unique characteristics of NB immune contexture and determined the phenotype signatures of PD-L1-expressing CD8+ T and NK cells in NB tumors by systemically analyzing the spatial distribution of T and NK cells and the distinct expression of programmed death 1 (PD-1) and its ligand (PD-L1) in patients with NB. We found that PD-L1-expressing CD8+ T and NK cells in NB tumors were highly activated and functionally competent and associated with better clinical outcomes. Intratumoral NK cells were a favorable prognostic biomarker independent of CD8+ T cells, PD-1/PD-L1 expression, tumor stage, MYCN amplification, and risk classification. NK cells combined with anti-PD-1/PD-L1 antibodies showed potent antitumor activity against both MYCN-amplified and non-amplified NBs in vitro and in vivo, and PD-L1-expressing NK cells associated with improved antitumor efficacy. Collectively, we raise novel insights into the role of PD-L1 expression on CD8+ T-cell and NK-cell activation. We highlight the great potential of intratumoral NK cells in better defining risk stratification, and predicting survival and response to anti-PD-1/PD-L1 therapy in NB. These findings explain why single anti-PD-1/PD-L1 therapy may not be successful in NB, suggesting its combination with NK cell-adoptive cellular therapy as a promising strategy for relapsing/refractory NB. This study provides a potential prospect that patients with PD-L1-expressing NK cells may respond to anti-PD-1/PD-L1 therapy.


Assuntos
Antígeno B7-H1 , Neuroblastoma , Criança , Adulto , Humanos , Receptor de Morte Celular Programada 1/genética , Linfócitos T CD8-Positivos/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Células Matadoras Naturais/metabolismo , Prognóstico , Neuroblastoma/terapia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Microambiente Tumoral
10.
Cell Death Dis ; 15(2): 124, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336749

RESUMO

MYCN amplification is an independent poor prognostic factor in patients with high-risk neuroblastoma (NB). Further exploring the molecular regulatory mechanisms in MYCN-amplified NB will help to develop novel therapy targets. In this study, methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) was identified as the differentially expressed gene (DEG) highly expressed in MYCN-amplified NB, and it showed a positive correlation with MYCN and was associated with a poor prognosis of NB patients. Knockdown of MTHFD1 inhibited proliferation and migration, and induced apoptosis of NB cells in vitro. Mouse model experiments validated the tumorigenic effect of MTHFD1 in NB in vivo. In terms of the mechanism, ChIP-qPCR and dual-luciferase reporter assays demonstrated that MTHFD1 was directly activated by MYCN at the transcriptional level. As an important enzyme in the folic acid metabolism pathway, MTHFD1 maintained the NADPH redox homeostasis in MYCN-amplified NB. Knockdown of MTHFD1 reduced cellular NADPH/NADP+ and GSH/GSSG ratios, increased cellular reactive oxygen species (ROS) and triggered the apoptosis of NB cells. Moreover, genetic knockdown of MTHFD1 or application of the anti-folic acid metabolism drug methotrexate (MTX) potentiated the anti-tumor effect of JQ1 both in vitro and in vivo. Taken together, MTHFD1 as an oncogene is a potential therapeutic target for MYCN-amplified NB. The combination of MTX with JQ1 is of important clinical translational significance for the treatment of patients with MYCN-amplified NB.


Assuntos
Metilenotetra-Hidrofolato Desidrogenase (NADP) , Neuroblastoma , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Homeostase , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , NADP/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Oxirredução
11.
Front Pharmacol ; 14: 1132219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205905

RESUMO

Introduction: Metronomic maintenance therapy (MMT) has significantly improved the survival of patients with high-risk rhabdomyosarcoma in clinical trials. However, there remains a lack of relevant data on its effectiveness in real-world situations. Methods: We retrospectively retrieved data of 459 patients < 18 years of age diagnosed with rhabdomyosarcoma at Sun Yat-sen University Cancer Center from January 2011 to July 2020 from our database. The MMT regimen was oral vinorelbine 25-40 mg/m2 for twelve 4-week cycles on days 1, 8, and 15, and oral cyclophosphamide 25-50 mg/m2 daily for 48 consecutive weeks. Results: A total of 57 patients who underwent MMT were included in the analysis. The median follow-up time was 27.8 (range: 2.9-117.5) months. From MMT to the end of follow-up, the 3-year PFS and OS rates were 40.6% ± 6.8% and 58.3% ± 7.2%, respectively. The 3-year PFS was 43.6% ± 11.3% in patients who were initially diagnosed as low- and intermediate-risk but relapsed after comprehensive treatment (20/57), compared with 27.8% ± 10.4% in high-risk patients (20/57) and 52.8% ± 13.3% in intermediate-risk patients who did not relapse (17/57). The corresponding 3-year OS for these three groups was 65.8% ± 11.4%, 50.1% ± 12.9%, and 55.6% ± 13.6%, respectively. Conclusion: We present a novel study of MMT with oral vinorelbine and continuous low doses of cyclophosphamide in real-world pediatric patients with RMS. Our findings showed that the MMT strategy significantly improved patient outcomes and may be an effective treatment for high-risk and relapsed patients.

12.
Theranostics ; 13(5): 1649-1668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056569

RESUMO

Rationale: Resistance to 5-fluorouracil (5-FU) chemotherapy remains the main barrier to effective clinical outcomes for patients with colorectal cancer (CRC). A better understanding of the detailed mechanisms underlying 5-FU resistance is needed to increase survival. Interleukin (IL)-33 is a newly discovered alarmin-like molecule that exerts pro- and anti-tumorigenic effects in various cancers. However, the precise role of IL-33 in CRC progression, as well as in the development of 5-FU resistance, remains unclear. Methods: High-quality RNA-sequencing analyses were performed on matched samples from patients with 5-FU-sensitive and 5-FU-resistant CRC. The clinical and biological significance of IL-33, including its effects on both T cells and tumor cells, as well as its relationship with 5-FU chemotherapeutic activity were examined in ex vivo, in vitro and in vivo models of CRC. The molecular mechanisms underlying these processes were explored. Results: IL-33 expressed by tumor cells was a dominant mediator of antitumoral immunity in 5-FU-sensitive patients with CRC. By binding to its ST2 receptor, IL-33 triggered CD4+ (Th1 and Th2) and CD8+ T cell responses by activating annexin A1 downstream signaling cascades. Mechanistically, IL-33 enhanced the sensitivity of CRC cells to 5-FU only in the presence of T cells, which led to the activation of both tumor cell-intrinsic apoptotic and immune killing-related signals, thereby synergizing with 5-FU to induce apoptosis of CRC cells. Moreover, injured CRC cells released more IL-33 and the T cell chemokines CXCL10 and CXCL13, forming a positive feedback loop to further augment T cell responses. Conclusions: Our results identified a previously unrecognized connection between IL-33 and enhanced sensitivity to 5-FU. IL-33 created an immune-active tumor microenvironment by orchestrating antitumoral T cell responses. Thus, IL-33 is a potential predictive biomarker for 5-FU chemosensitivity and favorable prognosis and has potential as a promising adjuvant immunotherapy to improve the clinical benefits of 5-FU-based therapies in the treatment of CRC.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Alarminas/uso terapêutico , Neoplasias Colorretais/patologia , Interleucina-33 , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral
13.
Front Immunol ; 14: 1182751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359533

RESUMO

Background: Programmed death receptor 1 (PD-1) inhibition has shown durable response and mild adverse events (AEs) in adult malignancies. However, data on the clinical activity of PD-1 inhibition in pediatric patients are lacking. We comprehensively assessed the efficacy and safety of PD-1 inhibitor-based regimens for pediatric malignancies. Methods: We conducted a real-world, multi-institutional, retrospective analysis of pediatric malignancies treated with PD-1 inhibitor-based regimens. The primary endpoints were objective response rate (ORR) and progression-free survival (PFS). The secondary endpoints included disease control rate (DCR), duration of response (DOR), and AEs. The Kaplan-Meier method was used to calculate PFS and DOR. The National Cancer Institute Common Toxicity Criteria for AEs (version 5.0) were used to grade toxicity. Results: A total of 93 and 109 patients were evaluated for efficacy and safety, respectively. For all efficacy-evaluable patients, PD-1 inhibitor monotherapy, combined chemotherapy, combined histone deacetylase inhibitor, and combined vascular endothelial growth factor receptor tyrosine kinase inhibitor cohorts, the ORR and DCR were 53.76%/81.72%, 56.67%/83.33%, 54.00%/80.00%, 100.00%/100.00%, and 12.50%/75.00%, respectively; the median PFS and DOR were 17.6/31.2 months, not achieved/not achieved, 14.9/31.2 months, 17.6/14.9 months, and 3.7/1.8 months, respectively; the incidence rate of AEs were 83.49%, 55.26%, 100.00%, 80.00%, and 100.00%, respectively. One patient in the PD-1 inhibitor-combined chemotherapy cohort discontinued treatment due to diabetic ketoacidosis. Conclusions: This largest retrospective analysis demonstrate that PD-1 inhibitor-based regimens are potentially effective and tolerable in pediatric malignancies. Our findings provide references for future clinical trials and practice of PD-1 inhibitors in pediatric cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Criança , Estudos Retrospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1 , Fator A de Crescimento do Endotélio Vascular , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Apoptose
14.
Front Immunol ; 14: 1212577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545530

RESUMO

Introduction: The limited response to immune checkpoint blockades (ICBs) in patients with hepatocellular carcinoma (HCC) highlights the urgent need for broadening the scope of current immunotherapy approaches. Lenvatinib has been shown a potential synergistic effect with ICBs. This study investigated the optimal method for combining these two therapeutic agents and the underlying mechanisms. Methods: The effect of lenvatinib at three different doses on promoting tissue perfusion and vascular normalization was evaluated in both immunodeficient and immunocompetent mouse models. The underlying mechanisms were investigated by analyzing the vascular morphology of endothelial cells and pericytes. The enhanced immune infiltration of optimal-dose lenvatinib and its synergistic effect of lenvatinib and anti-PD-1 antibody was further evaluated by flow cytometry and immunofluorescence imaging. Results: There was an optimal dose that superiorly normalized tumor vasculature and increased immune cell infiltration in both immunodeficient and immunocompetent mouse models. An adequate concentration of lenvatinib strengthened the integrity of human umbilical vein endothelial cells by inducing the formation of the NRP-1-PDGFRß complex and activating the Crkl-C3G-Rap1 signaling pathway in endothelial cells. Additionally, it promoted the interaction between endothelial cells and pericytes by inducing tyrosine-phosphorylation in pericytes. Furthermore, the combination of an optimal dose of lenvatinib and an anti-PD-1 antibody robustly suppressed tumor growth. Conclusions: Our study proposes a mechanism that explains how the optimal dose of lenvatinib induces vascular normalization and confirms its enhanced synergistic effect with ICBs.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/patologia , Células Endoteliais/metabolismo , Modelos Animais de Doenças
15.
Cell Death Dis ; 13(3): 251, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35304440

RESUMO

Hepatocellular carcinoma is one of the most common malignancies and has a poor prognosis. The ubiquitin-proteasome pathway is required for the degradation of most short-lived proteins. CMTM6 has been implicated in the progression of various tumors, but its biological function and the underlying molecular mechanisms in HCC are still unknown. In this study, we found that the expression of CMTM6 was significantly reduced in HCC and predicted better prognosis of HCC patients. Through in vitro and in vivo experiments, CMTM6 was shown to inhibit the proliferation of HCC cells by blocking the G1/S phase transition. Mechanistically, CMTM6 interacted with p21 and prevented its ubiquitination mediated by SCFSKP2, CRL4CDT2 and APC/CCDC20 in a cell-cycle-independent manner. As a result, CMTM6 stabilized p21 protein, leading to the inactivation of pRB/E2F pathway. Additionally, CMTM6 sensitized HCC cells to doxorubicin and cisplatin, positively correlated with better clinical outcomes of the transarterial chemoembolization (TACE) treatment for postoperative recurrence. Taken together, our study reports a novel mechanism by which p21 can be stabilized by CMTM6 and pinpoints a crucial role of the CMTM6-p21 axis in suppressing the progression of HCC and sensitizing patients with postoperative recurrence to TACE treatment.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ubiquitinação
16.
Int J Biol Sci ; 18(14): 5241-5259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147467

RESUMO

The imbalance of kinetochore-microtubule attachment during cell mitosis is a response to the initiation and progression of human cancers. Spindle component 25 (SPC25) is indispensable for spindle apparatus organization and chromosome segregation. SPC25 plays an important role in the development of malignant tumors, but its role in hepatocellular carcinoma (HCC) is yet to be determined. In this study, we aimed to preliminarily investigate the role of SPC25 in HCC progression and the molecular mechanisms underlying the process. We identified SPC25 as a clinically notable molecule significantly correlated with the grade of malignancy and poor survival in both The Cancer Genome Atlas (TCGA) cohort and the HCC patient cohort from our center. Mechanistically, SPC25 promoted the incidence of DNA damage and activated the DNA-PK/Akt/Notch1 signaling cascade in HCC cells; the NICD/ RBP-Jκ complex directly targeted SOX2 and NANOG in a transcriptional manner to regulate the proliferation and self-renewal of HCC cells. Our study suggests that HCC-intrinsic SPC25/DNA-PK/Akt/Notch1 signaling is an important mechanism to promote carcinogenesis by regulating the proliferation and stemness program, which provides possible biomarkers for predicting HCC progression and poor survival, as well as potential therapeutic targets for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Associadas aos Microtúbulos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/genética
17.
Cell Death Dis ; 12(12): 1093, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795209

RESUMO

Most patients with hepatocellular carcinoma (HCC) are in the middle or advanced stage at the time of diagnosis, and the therapeutic effect is limited. Therefore, this study aimed to verify whether deoxythymidylate kinase (DTYMK) increased in HCC and was an effective therapeutic target in HCC. The findings revealed that the DTYMK level significantly increased and correlated with poor prognosis in HCC. However, nothing else is known, except that DTYMK could catalyze the phosphorylation of deoxythymidine monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). A number of experiments were performed to study the function of DTYMK in vitro and in vivo to resolve this knowledge gap. The knockdown of DTYMK was found to significantly inhibit the growth of HCC and increase the sensitivity to oxaliplatin, which is commonly used in HCC treatment. Moreover, DTYMK was found to competitively combine with miR-378a-3p to maintain the expression of MAPK activated protein kinase 2 (MAPKAPK2) and thus activate the phospho-heat shock protein 27 (phospho-HSP27)/nuclear factor NF-kappaB (NF-κB) axis, which mediated the drug resistance, proliferation of tumor cells, and infiltration of tumor-associated macrophages by inducing the expression of C-C motif chemokine ligand 5 (CCL5). Thus, this study demonstrated a new mechanism and provided a new insight into the role of mRNA in not only encoding proteins to regulate the process of life but also regulating the expression of other genes and tumor microenvironment through the competing endogenous RNA (ceRNA) mechanism.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Núcleosídeo-Fosfato Quinase/metabolismo , Oxaliplatina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Oxaliplatina/farmacologia , Análise de Sobrevida
18.
Oncol Lett ; 21(3): 205, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33574944

RESUMO

Bladder cancer (BC) is the ninth most common lethal malignancy worldwide. Great efforts have been devoted to clarify the pathogenesis of BC, but the underlying molecular mechanisms remain unclear. To screen for the genes associated with the progression and carcinogenesis of BC, three datasets were obtained from the Gene Expression Omnibus. A total of 37 tumor and 16 non-cancerous samples were analyzed to identify differentially expressed genes (DEGs). Subsequently, 141 genes were identified, including 55 upregulated and 86 downregulated genes. The protein-protein interaction network was established using the Search Tool for Retrieval of Interacting Genes database. Hub gene identification and module analysis were performed using Cytoscape software. Hierarchical clustering of hub genes was conducted using the University of California, Santa Cruz Cancer Genomics Browser. Among the hub genes, kinesin family member 11 (KIF11) was identified as one of the most significant prognostic biomarkers among all the candidates. The Kaplan Meier Plotter database was used for survival analysis of KIF11. The expression profile of KIF11 was analyzed using the ONCOMINE database. The expression levels of KIF11 in BC samples and bladder cells were measured using reverse transcription-quantitative pCR, immunohistochemistry and western blotting. In summary, KIF11 was significantly upregulated in BC and might act as a potential prognostic biomarker. The present identification of DEGs and hub genes in BC may provide novel insight for investigating the molecular mechanisms of BC.

19.
Clin Transl Immunology ; 10(3): e1257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717483

RESUMO

OBJECTIVES: Although axitinib has achieved a preferable response rate for advanced renal cell carcinoma (RCC), patient survival remains unsatisfactory. In this study, we evaluated the efficacy and safety of a combination treatment of axitinib and a low dose of pembrolizumab-activated autologous dendritic cells-co-cultured cytokine-induced killer cells in patients with advanced RCC. METHODS: All adult patients, including treatment-naive or pretreated with VEGF-targeted agents, were enrolled from May 2016 to March 2019. Patients received axitinib 5 mg twice daily and pembrolizumab-activated dendritic cells-co-cultured cytokine-induced killer cells intravenously weekly for the first four cycles, every 2 weeks for the next four cycles, and every month thereafter. RESULTS: The 43 patients (22 untreated and 21 previously treated) showed a median progression-free survival (mPFS) of 14.7 months (95% CI, 11.16-18.30). mPFS in treatment-naive patients was 18.2 months, as compared with 14.4 months in pretreated patients (log-rank P-value = 0.07). Overall response rates were 25.6% (95% CI, 13.5-41.2%). Grade 3 or higher adverse events occurred in 5% of patients included hypertension (11.6%) and palmar-plantar erythrodysesthesia (7.0%). Peripheral blood lymphocyte immunophenotype and serum cytokine profile analyses demonstrated increased antitumor immunity after combination treatment particularly in patients with a long-term survival benefit, while those with a minimal survival benefit demonstrated an elevated proportion of peripheral CD8+TIM3+ T cells and lower serum-level immunostimulatory cytokine profile. CONCLUSIONS: The combination therapy was active and well tolerated for treatment of advanced RCC, either as first- or second-line treatment following other targeted agents. Changes in immunophenotype and serum cytokine profile may be used as prognostic biomarkers.

20.
Biomark Res ; 8: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005420

RESUMO

BACKGROUND: Interferon-γ (IFN-γ) plays a key role in activation of cellular immunity and subsequently, stimulation of antitumor immune-response. Based on its cytostatic, pro-apoptotic and antiproliferative functions, IFN-γ is considered potentially useful for adjuvant immunotherapy for different types of cancer. Moreover, it IFN-γ may inhibit angiogenesis in tumor tissue, induce regulatory T-cell apoptosis, and/or stimulate the activity of M1 proinflammatory macrophages to overcome tumor progression. However, the current understanding of the roles of IFN-γ in the tumor microenvironment (TME) may be misleading in terms of its clinical application. MAIN BODY: Some researchers believe it has anti-tumorigenic properties, while others suggest that it contributes to tumor growth and progression. In our recent work, we have shown that concentration of IFN-γ in the TME determines its function. Further, it was reported that tumors treated with low-dose IFN-γ acquired metastatic properties while those infused with high dose led to tumor regression. Pro-tumorigenic role may be described through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, upregulation of indoleamine 2,3-dioxygenase, and checkpoint inhibitors such as programmed cell death ligand 1. CONCLUSION: Significant research efforts are required to decipher IFN-γ-dependent pro- and anti-tumorigenic effects. This review discusses the current knowledge concerning the roles of IFN-γ in the TME as a part of the complex immune response to cancer and highlights the importance of identifying IFN-γ responsive patients to improve their sensitivity to immuno-therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA